On the Ellipticity of Static Equations of Strain Gradient Elasticity and Infinitesimal Stability

被引:0
|
作者
Eremeyev, V. A. [1 ]
机构
[1] Univ Cagliari, Cagliari, Italy
基金
俄罗斯基础研究基金会;
关键词
strain gradient elasticity; strong ellipticity; infinitesimal stability; MATRIX REPRESENTATIONS; BOUNDARY; MODELS; MICRO;
D O I
10.1134/S1063454123010053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Conditions for the strong ellipticity of equilibrium equations are formulated within strain gradient elasticity under finite deformations. In this model, the strain energy density is a function of the first and second gradients of the position vector (deformation gradient). Ellipticity imposes certain constraints on the tangent elastic moduli. It is also closely related to infinitesimal stability, which is defined as the positive definiteness of the second variation of the potential-energy functional. The work considers the first boundary-value problem (with Dirichlet boundary conditions). For a 1D deformation, necessary and sufficient conditions for infinitesimal stability are determined, which are two inequalities for elastic moduli.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 50 条
  • [31] On chiral effects in strain gradient elasticity
    Iesan, D.
    Quintanilla, R.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2016, 58 : 233 - 246
  • [32] A new form of strain gradient elasticity
    Zhao, Bing
    Zheng, Yingren
    Yan, Xiaoqiang
    Hou, Jialin
    STRUCTURAL INTEGRITY AND MATERIALS AGEING IN EXTREME CONDITIONS, 2010, : 311 - 316
  • [33] Dislocations in second strain gradient elasticity
    Lazar, M
    Maugin, GA
    Aifantis, EC
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (06) : 1787 - 1817
  • [34] On the gradient strain elasticity theory of plates
    Lazopoulos, KA
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2004, 23 (05) : 843 - 852
  • [35] Symmetry conditions in strain gradient elasticity
    Gusev, Andrei A.
    Lurie, Sergey A.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2017, 22 (04) : 683 - 691
  • [36] On nonlinear dilatational strain gradient elasticity
    Eremeyev, Victor A.
    Cazzani, Antonio
    dell'Isola, Francesco
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2021, 33 (04) : 1429 - 1463
  • [37] On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
    Eremeyev, Victor A.
    Lurie, Sergey A.
    Solyaev, Yury O.
    dell'Isola, Francesco
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [38] Static and Dynamic Analysis of a Piezoelectric Semiconductor Cantilever Under Consideration of Flexoelectricity and Strain Gradient Elasticity
    Kai Fang
    Peng Li
    Zhenghua Qian
    Acta Mechanica Solida Sinica, 2021, 34 : 673 - 686
  • [39] On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
    Victor A. Eremeyev
    Sergey A. Lurie
    Yury O. Solyaev
    Francesco dell’Isola
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [40] Static and Dynamic Analysis of a Piezoelectric Semiconductor Cantilever Under Consideration of Flexoelectricity and Strain Gradient Elasticity
    Fang, Kai
    Li, Peng
    Qian, Zhenghua
    ACTA MECHANICA SOLIDA SINICA, 2021, 34 (05) : 673 - 686