A Combined Raman Spectroscopy and Atomic Force Microscopy System for In Situ and Real-Time Measures in Electrochemical Cells

被引:4
|
作者
Bussetti, Gianlorenzo [1 ]
Menegazzo, Marco [1 ]
Mitko, Sergei [2 ]
Castiglioni, Chiara [3 ]
Tommasini, Matteo [3 ]
Lucotti, Andrea [3 ]
Magagnin, Luca [3 ]
Russo, Valeria [4 ]
Li Bassi, Andrea [4 ]
Siena, Martina [5 ]
Guadagnini, Alberto [5 ]
Grillo, Samuele [6 ]
Del Curto, Davide [7 ]
Duo, Lamberto [1 ]
机构
[1] Politecn Milan, Dept Phys, I-20133 Milan, Italy
[2] NT MDT BV, Hoenderpk Weg 96 B, NL-7335 GX Apeldoorn, Netherlands
[3] Politecn Milan, Dept Chem Mat & Chem Engn, I-20133 Milan, Italy
[4] Politecn Milan, Dept Energy, I-20133 Milan, Italy
[5] Politecn Milan, Dept Civil & Environm Engn, I-20133 Milan, Italy
[6] Politecn Milan, Dept Elect Informat & Bioengn, I-20133 Milan, Italy
[7] Politecn Milan, Dept Architecture & Urban Studies, I-20133 Milan, Italy
关键词
solid-liquid interface; HOPG intercalation; in situ AFM; Raman spectroscopy; INTERCALATION COMPOUNDS; GRAPHITE-INTERCALATION; TUNNELING-MICROSCOPY; ANION INTERCALATION; GRAPHENE;
D O I
10.3390/ma16062239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An innovative and versatile set-up for in situ and real time measures in an electrochemical cell is described. An original coupling between micro-Raman spectroscopy and atomic force microscopy enables one to collect data on opaque electrodes. This system allows for the correlation of topographic images with chemical maps during the charge exchange occurring in oxidation/reduction processes. The proposed set-up plays a crucial role when reactions, both reversible and non-reversible, are studied step by step during electrochemical reactions and/or when local chemical analysis is required.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] In situ, real-time Raman microscopy of embedded single particle graphite electrodes
    Luo, Y
    Cai, WB
    Scherson, DA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) : A1100 - A1105
  • [32] Multimodal characterization of live cancer cells using atomic force microscopy and Raman spectroscopy
    Sarkar, Anwesha
    Hassan, Nora
    Bardhan, Rizia
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 418A - 418A
  • [33] Noncontact electrochemical imaging with combined scanning electrochemical atomic force microscopy
    Macpherson, JV
    Unwin, PR
    ANALYTICAL CHEMISTRY, 2001, 73 (03) : 550 - 557
  • [34] Real-time imaging of drug-membrane interactions by atomic force microscopy
    Berquand, A
    Mingeot-Leclercq, MP
    Dufrêne, YF
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2004, 1664 (02): : 198 - 205
  • [35] Real-time enzymatic biodegradation of collagen fibrils monitored by atomic force microscopy
    Paige, MF
    Lin, AC
    Goh, MC
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2002, 50 (01) : 1 - 10
  • [36] Bringing real-time traceability to high-speed atomic force microscopy
    Heaps, Edward
    Yacoot, Andrew
    Dongmo, Herve
    Picco, Loren
    Payton, Oliver D.
    Russell-Pavier, Freddie
    Klapetek, Petr
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (07)
  • [37] Real-time observation and characterization of phase transitions in polyolefins by atomic force microscopy
    Mirabella, Francis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [38] Real-time monitoring of polymer swelling on the nanometer scale by atomic force microscopy
    Paredes, JI
    Villar-Rodil, S
    Tamargo-Martínez, K
    Martínez-Alonso, A
    Tascón, JMD
    LANGMUIR, 2006, 22 (10) : 4728 - 4733
  • [39] Real-time crystallization of poly(ε-caprolactone) studied by atomic force microscopy.
    Beekmans, LGM
    Vancso, GJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U643 - U643
  • [40] Compatible real-time rates of mineral dissolution by Atomic Force Microscopy (AFM)
    Dove, PM
    Platt, FM
    CHEMICAL GEOLOGY, 1996, 127 (04) : 331 - 338