Enhanced Power Generation by Piezoelectric P(VDF-TrFE)/rGO Nanocomposite Thin Film

被引:15
|
作者
Yaseen, Hafiz Muhammad Abid [1 ]
Park, Sangkwon [1 ]
机构
[1] Dongguk Univ, Dept Chem & Biochem Engn, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
关键词
piezoelectric nanogenerator (PENG); nanocomposite thin film; Langmuir-Schaefer (LS) technique; P(VDF-TrFE); rGO; enhanced performance; REDUCED GRAPHENE OXIDE; DIELECTRIC-PROPERTIES; BETA-PHASE; VINYLIDENE FLUORIDE; PVDF; FABRICATION; PERFORMANCE; NANOGENERATORS; CONSTANT; SPECTRA;
D O I
10.3390/nano13050860
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study we fabricated a piezoelectric nanogenerator (PENG) of nanocomposite thin film comprising a conductive nanofiller of reduced graphene oxide (rGO) dispersed in a poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) matrix that was anticipated to show enhanced energy harvest performance. For the film preparation we employed the Langmuir-Schaefer (LS) technique to provide direct nucleation of the polar beta-phase without any traditional polling or annealing process. We prepared five PENGs consisting of the nanocomposite LS films with different rGO contents in the P(VDF-TrFE) matrix and optimized their energy harvest performance. We found that the rGO-0.002 wt% film yielded the highest peak-peak open-circuit voltage (V-OC) of 88 V upon bending and releasing at 2.5 Hz frequency, which was more than two times higher than the pristine P(VDF-TrFE) film. This optimized performance was explained by increased beta-phase content, crystallinity, and piezoelectric modulus, and improved dielectric properties, based on scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), x-ray diffraction (XRD), piezoelectric modulus, and dielectric property measurement results. This PENG with enhanced energy harvest performance has great potential in practical applications for low energy power supply in microelectronics such as wearable devices.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] 2-Dimensional rGO introduced PMN-PT and P(VDF-TrFE) flexible films for enhanced piezoelectric energy harvester
    Kim, Jinhwan
    Ji, Jae-Hoon
    Shin, Dong-Jin
    Yoon, Sanghyun
    Ko, Young-Ho
    Cho, Kyung-Ho
    Koh, Jung-Hyuk
    APPLIED SURFACE SCIENCE, 2019, 494 : 1000 - 1006
  • [42] Studies on the pyroelectric and piezoelectric properties of PT/P (VDF-TrFE) composites
    Chen, Wanglihua
    Cai, Zhonglong
    Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 1997, 19 (04): : 247 - 253
  • [43] Airflow-induced P(VDF-TrFE) fiber arrays for enhanced piezoelectric energy harvesting
    Kim, Yong-Il
    Kim, Dabin
    Jung, Jihun
    Kim, Sang-Woo
    Kim, Miso
    APL MATERIALS, 2022, 10 (03):
  • [44] The ferroelectricity and electrical properties of P(VDF-TrFE) copolymer film
    Kim, Dong-Won
    Lee, Gwang-Geun
    Park, Byung-Eun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 51 (02) : 719 - 722
  • [45] A Flexible Piezoelectric Nanogenerator Based on Aligned P(VDF-TrFE) Nanofibers
    You, Sujian
    Zhang, Lingling
    Gui, Jinzheng
    Cui, Heng
    Guo, Shishang
    MICROMACHINES, 2019, 10 (05)
  • [46] Improved MgO/P(VDF-TrFE) Piezoelectric Nanogenerator with Flexible Electrode
    J. Arunguvai
    P. Lakshmi
    Arabian Journal for Science and Engineering, 2022, 47 : 14365 - 14375
  • [47] The Longitudinal and Transverse Piezoelectric Effects of the Ferroelectric Polymer P(VDF-TrFE)
    Revenant, Christine
    Toinet, Simon
    Bright, Eleanor Lawrence
    Benwadih, Mohammed
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2025,
  • [48] Tough and porous piezoelectric P(VDF-TrFE)/organosilicate composite membrane
    He, Fu-An
    Kim, Min-Ji
    Chen, Shui-Mei
    Wu, Yuen-Shing
    Lam, Kwok-Ho
    Chan, Helen Lai-Wa
    Fan, Jin-Tu
    HIGH PERFORMANCE POLYMERS, 2017, 29 (02) : 133 - 140
  • [49] Temperature Control of P(VDF-TrFE) Copolymer Thin Films
    Feng, Tingting
    Xie, Dan
    Zang, Yongyuan
    Wu, Xiao
    Ren, Tianling
    Pan, Wei
    INTEGRATED FERROELECTRICS, 2013, 141 (01) : 187 - 194
  • [50] Contribution of copolymer in the piezoelectric effect of PT/P (VDF-TrFE) composite
    Zhang, Yiewen
    Chan, W.K.
    Chan, H.L.W.
    Xia, Zhongfu
    Choy, C.L.
    Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 1998, 20 (06): : 397 - 401