Anthropogenic amplification of biogenic secondary organic aerosol production

被引:3
|
作者
Zheng, Yiqi [1 ,2 ]
Horowitz, Larry W. W. [3 ]
Menzel, Raymond [3 ]
Paynter, David J. [3 ]
Naik, Vaishali [3 ]
Li, Jingyi [4 ]
Mao, Jingqiu [1 ,2 ]
机构
[1] Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK 99775 USA
[2] Univ Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA
[3] NOAA Geophys Fluid Dynam Lab, Princeton, NJ USA
[4] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing, Peoples R China
关键词
NITRATE RADICAL OXIDATION; BIOMASS BURNING EMISSIONS; LAND-USE CHANGE; OBSERVATIONAL CONSTRAINTS; PARTICULATE MATTER; NITROGEN-OXIDES; UNITED-STATES; SOA FORMATION; ALPHA-PINENE; MODEL;
D O I
10.5194/acp-23-8993-2023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biogenic secondary organic aerosols (SOAs) contribute to a large fraction of fine aerosols globally, impacting air quality and climate. The formation of biogenic SOA depends on not only emissions of biogenic volatile organic compounds (BVOCs) but also anthropogenic pollutants including primary organic aerosol, sulfur dioxide (SO2), and nitrogen oxides (NOx). However, the anthropogenic impact on biogenic SOA production (AIBS) remains unclear. Here we use the decadal trend and variability in observed organic aerosol (OA) in the southeast US, combined with a global chemistry-climate model, to better constrain AIBS. We show that the reduction in SO2 emissions can only explain 40 % of the decreasing decadal trend of OA in this region, constrained by the low summertime month-to-month variability in surface OA. We hypothesize that the rest of the OA decreasing trend is largely due to a reduction in NOx emissions. By implementing a scheme for monoterpene SOA with enhanced sensitivity to NOx, our model can reproduce the decadal trend and variability in OA in this region. Extending to a centennial scale, our model shows that global SOA production increases by 36 % despite BVOC reductions from the preindustrial period to the present day, largely amplified by AIBS. Our work suggests a strong coupling between anthropogenic and biogenic emissions in biogenic SOA production that is missing from current climate models.
引用
收藏
页码:8993 / 9007
页数:15
相关论文
共 50 条
  • [31] Secondary organic aerosol from biogenic volatile organic compound mixtures
    Hatfield, Meagan L.
    Hartz, Kara E. Huff
    ATMOSPHERIC ENVIRONMENT, 2011, 45 (13) : 2211 - 2219
  • [32] Simulating Biogenic Secondary Organic Aerosol During Summertime in China
    Qin, Momei
    Wang, Xuesong
    Hu, Yongtao
    Ding, Xiang
    Song, Yu
    Li, Mengmeng
    Vasilakos, Petros
    Nenes, Athanasios
    Russell, Armistead G.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (19) : 11100 - 11119
  • [33] Biogenic and anthropogenic sources of isoprene and monoterpenes and theirsecondary organic aerosol in Delhi, India
    Bryant, Daniel J.
    Nelson, Beth S.
    Swift, Stefan J.
    Budisulistiorini, Sri Hapsari
    Drysdale, Will S.
    Vaughan, Adam R.
    Newland, Mike J.
    Hopkins, James R.
    Cash, James M.
    Langford, Ben
    Nemitz, Eiko
    Acton, W. Joe F.
    Hewitt, C. Nicholas
    Mandal, Tuhin
    Gurjar, Bhola R.
    Shivani
    Gadi, Ranu
    Lee, James D.
    Rickard, Andrew R.
    Hamilton, Jacqueline F.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (01) : 61 - 83
  • [34] An amorphous solid state of biogenic secondary organic aerosol particles
    Annele Virtanen
    Jorma Joutsensaari
    Thomas Koop
    Jonna Kannosto
    Pasi Yli-Pirilä
    Jani Leskinen
    Jyrki M. Mäkelä
    Jarmo K. Holopainen
    Ulrich Pöschl
    Markku Kulmala
    Douglas R. Worsnop
    Ari Laaksonen
    Nature, 2010, 467 : 824 - 827
  • [35] The direct and indirect radiative effects of biogenic secondary organic aerosol
    Scott, C. E.
    Rap, A.
    Spracklen, D. V.
    Forster, P. M.
    Carslaw, K. S.
    Mann, G. W.
    Pringle, K. J.
    Kivekas, N.
    Kulmala, M.
    Lihavainen, H.
    Tunved, P.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (01) : 447 - 470
  • [36] Secondary organic aerosol formation from aromatic and biogenic hydrocarbons
    Hoffmann, T
    Klockow, D
    Odum, J
    Bowman, F
    Collins, D
    Flagan, RC
    Seinfeld, JH
    PROCEEDINGS OF EUROTRAC SYMPOSIUM '96 - TRANSPORT AND TRANSFORMATION OF POLLUTANTS IN THE TROPOSPHERE, VOL 1: CLOUDS, AEROSOLS, MODELLING AND PHOTO-OXIDANTS, 1997, : 303 - 307
  • [37] An amorphous solid state of biogenic secondary organic aerosol particles
    Virtanen, Annele
    Joutsensaari, Jorma
    Koop, Thomas
    Kannosto, Jonna
    Yli-Pirila, Pasi
    Leskinen, Jani
    Makela, Jyrki M.
    Holopainen, Jarmo K.
    Poeschl, Ulrich
    Kulmala, Markku
    Worsnop, Douglas R.
    Laaksonen, Ari
    NATURE, 2010, 467 (7317) : 824 - 827
  • [38] Photolysis Controls Atmospheric Budgets of Biogenic Secondary Organic Aerosol
    Zawadowicz, Maria A.
    Lee, Ben H.
    Shrivastava, Manish
    Zelenyuk, Alla
    Zaveri, Rahul A.
    Flynn, Connor
    Thornton, Joel A.
    Shilling, John E.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (07) : 3861 - 3870
  • [39] Effect of acidic seed on biogenic secondary organic aerosol growth
    Czoschke, NM
    Jang, M
    Kamens, RM
    ATMOSPHERIC ENVIRONMENT, 2003, 37 (30) : 4287 - 4299
  • [40] High contribution of biogenic hydroperoxides to secondary organic aerosol formation
    Bonn, B
    von Kuhlmann, R
    Lawrence, MG
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (10) : L101081 - 4