Smart Pothole Detection System using Deep Learning Algorithms

被引:0
|
作者
Chougule, Savita [1 ]
Barhatte, Alka [1 ]
机构
[1] MIT WPU, Sch Elect & Commun Engn, Pune, India
关键词
ADAS; CNN; Potholes; Raspberry Pi; Yolo; ROAD;
D O I
10.1007/s13177-023-00363-3
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Potholes are a threat on roads, and their presence compromises driver, vehicle, and pedestrian safety. In developing countries, the primary reason for road accidents is bad road conditions, resulting in human life and property loss. In countries like India, Road maintenance is a challenging activity. Accidents rates are increasing year by year due to the up-surging potholes count. This paper presents the system as "Forward View Guidance for pothole detection for Indian passenger Car." The camera captures video images, and a deep learning algorithm is used to classify the images as potholes and regular roads. The camera will also provide a view of the vehicle's front, highlighting the pothole. Deep learning YOLOv3 and YOLOv5 algorithms are used to train the model and tested with the Kaggle pothole detection datasets to predict the model's accuracy for detection. The proposed system will help monitor the road's condition, count the number of potholes on the road, and generate an alert signal. The performance of the proposed system is evaluated using precision, recall, and average precision (AP). The experimentation results show that the YOLOv5 algorithm performs best than the YOLOv3 algorithm. The precision, recall, and average precision (AP) for YOLOv5 are obtained as 0.763, 0.548, and 0.635, respectively. The system algorithm is implemented on the Raspberry Pi 4B model, which can be easily fitted as an addon system in the vehicle.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 50 条
  • [41] A deep learning approach to automatic road surface monitoring and pothole detection
    Varona, Braian
    Monteserin, Ariel
    Teyseyre, Alfredo
    PERSONAL AND UBIQUITOUS COMPUTING, 2020, 24 (04) : 519 - 534
  • [42] Intelligent phishing detection scheme using deep learning algorithms
    Adebowale, Moruf Akin
    Lwin, Khin T.
    Hossain, M. A.
    JOURNAL OF ENTERPRISE INFORMATION MANAGEMENT, 2023, 36 (03) : 747 - 766
  • [43] Lung Diseases Detection Using Various Deep Learning Algorithms
    Jasmine Pemeena Priyadarsini M.
    Kotecha K.
    Rajini G.K.
    Hariharan K.
    Utkarsh Raj K.
    Bhargav Ram K.
    Indragandhi V.
    Subramaniyaswamy V.
    Pandya S.
    Journal of Healthcare Engineering, 2023, 2023
  • [44] Omni SCADA Intrusion Detection Using Deep Learning Algorithms
    Gao, Jun
    Gan, Luyun
    Buschendorf, Fabiola
    Zhang, Liao
    Liu, Hua
    Li, Peixue
    Dong, Xiaodai
    Lu, Tao
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (02) : 951 - 961
  • [45] Detection and Classification of Fabric Defects Using Deep Learning Algorithms
    Geze, Recep Ali
    Akbas, Ayhan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2024, 27 (01):
  • [46] Brain Hemorrhage Detection using Heatmaps and Deep Learning Algorithms
    Chevvuri, Swarna Tejaswi
    Kumar Reddy S, Venkata Rohit
    Nelluru, Sai Teja
    Yadlapalli, Priyanka
    International Conference on Innovative Data Communication Technologies and Application, ICIDCA 2023 - Proceedings, 2023, : 89 - 94
  • [47] Apple Detection in Natural Environment Using Deep Learning Algorithms
    Xuan, Guantao
    Gao, Chong
    Shao, Yuanyuan
    Zhang, Meng
    Wang, Yongxian
    Zhong, Jingrun
    Li, Qingguo
    Peng, Hongxing
    IEEE ACCESS, 2020, 8 : 216772 - 216780
  • [48] A deep learning framework for intrusion detection system in smart grids using graph convolutional network
    Basheer, Liloja
    Ranjana, P.
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [49] AI Enabled Accident Detection and Alert System Using IoT and Deep Learning for Smart Cities
    Pathik, Nikhlesh
    Gupta, Rajeev Kumar
    Sahu, Yatendra
    Sharma, Ashutosh
    Masud, Mehedi
    Baz, Mohammed
    SUSTAINABILITY, 2022, 14 (13)
  • [50] FDeep: A Fog-based Intrusion Detection System for Smart Home using Deep Learning
    Gazdar, Tahani
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (12) : 348 - 355