All-polymeric fibrous triboelectric nanogenerator for self-powered intelligent active motions monitoring system

被引:12
|
作者
Wu, Yuxuan [1 ]
Cui, Xiuju [2 ]
Wu, Hanguang [2 ]
Su, Zhiqiang [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing Key Lab Adv Funct Polymer Composites, Beijing 100029, Peoples R China
[2] Beijing Inst Fash Technol, Beijing Key Lab Clothing Mat R&D & Assessment, Beijing 100029, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Fibrous TENG; All-polymer; Human motion monitoring; Wireless sensor system; FIBER; SENSOR;
D O I
10.1016/j.cej.2023.143708
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The emergence of fibrous triboelectric nanogenerators (FTENGs) provides a promising candidate for selfpowered wearable electronics, and developing the all-polymeric FTENGs is beneficial to further improve the wearing comfort of the devices. However, it remains a crucial challenge to fabricate the all-polymeric FTENGs with ideal energy output performances. In this work, an all-polymeric stretchable FTENG (PEDOT/FSiR-FTENG) with high triboelectric outputs is fabricated through a simple rolling method and applied in the human active motions monitoring. The wrinkled poly(3,4-ethylenedioxythiophene): poly(4-styrenesulfonate) (PEDOT:PSS) electrode layer is constructed to endow the PEDOT/FSiR-FTENG with high stretchability, enabling it to stably output electrical signals under 50% strain extension. In addition, the configuration and constituent of the electrode are adjusted to further enhance its conductivity, thereby significantly optimizing the triboelectric performance of the PEDOT/FSiR-FTENG. The obtained PEDOT/FSiR-FTENG can output the open-circuit voltage and short-circuit current of 30 V and 0.16 & mu;A respectively under the external force of 60 N, and the electric signals show an obvious variation with the change of the force between 0.5 and 220 N, demonstrating its high sensitivity and responsiveness to mechanical stimuli. Taking advantage of these outstanding properties, the PEDOT/FSiR-FTENG is applied as a flexible self-powered sensor in the precise physiological detection, including large human motions (steps and joints bending) and slight human vital signs (expression, pulse, and phonation). In addition, a self-powered intelligent active motion monitoring system with wireless data transmission ability is developed based on the PEDOT/FSiR-FTENG, presenting great application potential in the remote patient care and the real-time communication between deaf-mutes.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator
    Zheng, Qiang
    Zhang, Hao
    Shi, Bojing
    Xue, Xiang
    Liu, Zhuo
    Jin, Yiming
    Ma, Ye
    Zou, Yang
    Wang, Xinxin
    An, Zhao
    Tang, Wei
    Zhang, Wei
    Yang, Fan
    Liu, Yang
    Lang, Xilong
    Xu, Zhiyun
    Li, Zhou
    Wang, Zhong Lin
    ACS NANO, 2016, 10 (07) : 6510 - 6518
  • [32] Magnetically levitated-triboelectric nanogenerator as a self-powered vibration monitoring sensor
    Zhang, Zengxing
    He, Jian
    Wen, Tao
    Zhai, Cong
    Han, Jianqiang
    Mu, Jiliang
    Jia, Wei
    Zhang, Binzhen
    Zhang, Wendong
    Chou, Xiujian
    Xue, Chenyang
    NANO ENERGY, 2017, 33 : 88 - 97
  • [33] Bio-inspired vibration isolator with triboelectric nanogenerator for self-powered monitoring
    Yang, Tao
    Xie, Jiaheng
    Huang, Zixi
    Liu, Jiayi
    Luo, Hongchun
    Jing, Xingjian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 223
  • [34] Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior monitoring
    Meng, Xiaoyi
    Cheng, Qian
    Jiang, Xiaobei
    Fang, Zhen
    Chen, Xianxiang
    Li, Shaoqing
    Li, Chenggang
    Sun, Chunwen
    Wang, Wuhong
    Wang, Zhong Lin
    NANO ENERGY, 2018, 51 : 721 - 727
  • [35] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [36] An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator
    Dhakar, Lokesh
    Pitchappa, Prakash
    Tay, Francis Eng Hock
    Lee, Chengkuo
    NANO ENERGY, 2016, 19 : 532 - 540
  • [37] Self-Powered Phase Transition Driven by Triboelectric Nanogenerator
    Ren, Lele
    Xiao, Junfeng
    Wang, Wei
    Yu, Aifang
    Zhang, Yufei
    Zhai, Junyi
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (05) : 2845 - 2852
  • [38] Self-powered pressure sensors based on triboelectric nanogenerator
    Xu, Mengfei
    Tao, Kai
    Chen, Zhensheng
    Chen, Hao
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3498 - 3501
  • [39] Self-powered artificial synapses actuated by triboelectric nanogenerator
    Liu, Yaqian
    Zhong, Jianfeng
    Li, Enlong
    Yang, Huihuang
    Wang, Xiumei
    Lai, Dengxiao
    Chen, Huipeng
    Guo, Tailiang
    NANO ENERGY, 2019, 60 : 377 - 384
  • [40] A paper triboelectric nanogenerator for self-powered electronic systems
    Mao, Yanchao
    Zhang, Nan
    Tang, Yingjie
    Wang, Meng
    Chao, Mingju
    Liang, Erjun
    NANOSCALE, 2017, 9 (38) : 14499 - 14505