A Novel Two-Dimensional TiClO as a High-Performance Anode Material for Mg-Ion Batteries: A First-Principles Study

被引:4
|
作者
Zhang, Songcheng [1 ]
Liu, Chunsheng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
magnesium-ion batteries; 2D materials; TiClO; anode; first-principles calculations; LI-ION; LITHIUM; PHOSPHORENE; CHALLENGES; MONOLAYER; POINTS; SPACE;
D O I
10.3390/ma16103876
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Searching for efficient electrode materials with excellent electrochemical performance is of great significance to the development of magnesium-ion batteries (MIBs). Two-dimensional Ti-based materials are appealing for use in MIBs due to their high cycling capability. On the basis of density functional theory (DFT) calculations, we comprehensively investigate a novel two-dimensional Ti-based material, namely, TiClO monolayer, as a promising anode for MIBs. Monolayer TiClO can be exfoliated from its experimentally known bulk crystal with a moderate cleavage energy of 1.13 J/m(2). It exhibits intrinsically metallic properties with good energetical, dynamical, mechanical, and thermal stabilities. Remarkably, TiClO monolayer possesses an ultra-high storage capacity (1079 mA h g(-1)), a low energy barrier (0.41-0.68 eV), and a suitable average open-circuit voltage (0.96 V). The lattice expansion for the TiClO monolayer is slight (<4.3%) during the Mg-ion intercalation. Moreover, bilayer and trilayer TiClO can considerably enhance the Mg binding strength and maintain the quasi-one-dimensional diffusion feature compared with monolayer TiClO. All these properties indicate that TiClO monolayers can be utilized as high-performance anodes for MIBs.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] First-principles study of two-dimensional zirconium nitrogen compounds: Anode materials for Na-ion batteries
    Liu, Gang
    Xu, Shuai
    Wu, Liyuan
    Zhang, Jianhang
    Wang, Qian
    Lu, Pengfei
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 250
  • [22] First principles study of two-dimensional penta-germagraphene as good anode material for potassium ion batteries
    Wang, Hewen
    Luo, Wenwei
    Wu, Musheng
    Ouyang, Chuying
    SOLID STATE IONICS, 2024, 412
  • [23] Two-Dimensional Pentagraphyne as a High-Performance Anode Material for Li/Na-Ion Rechargeable Batteries
    Deb, Jyotirmoy
    Ahuja, Rajeev
    Sarkar, Utpal
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 10572 - 10582
  • [24] Two-Dimensional Mesoporous Carbon Nanosheets as a High-Performance Anode Material for Lithium-Ion Batteries
    Li, Jili
    Yao, Ruimin
    Bai, Ju
    Cao, Chuanbao
    CHEMPLUSCHEM, 2013, 78 (08): : 797 - 800
  • [25] Unveiling the potential of a BCN-biphenylene monolayer as a high-performance anode material for alkali metal ion batteries: a first-principles study
    Kumar, Ajay
    Parida, Prakash
    NANOSCALE, 2024, 16 (27) : 13131 - 13147
  • [26] Defective phosphorene as an anode material for high-performance Li-, Na-, and K-ion batteries: a first-principles study
    Atashzar, Seyyed Mahdi
    Javadian, Soheila
    Gharibi, Hussein
    Rezaei, Zahra
    NANOSCALE, 2020, 12 (39) : 20364 - 20373
  • [27] First-Principles Approach to Assess the Viability of MoOPO4 as an Electrode Material for Mg-Ion Batteries
    Yang, Jingdong
    Wen, Jiaxin
    Ye, Junliu
    Dong, Xiaoyang
    Huang, Guangshen
    Wang, Jingfeng
    Wang, Jinxing
    Pan, Fusheng
    CRYSTAL GROWTH & DESIGN, 2025, 25 (05) : 1545 - 1555
  • [28] Functionalized MBenes as promising anode materials for high-performance alkali-ion batteries: a first-principles study
    Ahmad, Sheraz
    Xu, Hu
    Chen, Letian
    Din, H. U.
    Zhou, Zhen
    NANOTECHNOLOGY, 2024, 35 (28)
  • [29] Two-dimensional Dirac TiB2C2 as a potential anode material for Li-ion batteries: a first-principles study
    Etrini, A.
    Elomrani, A.
    Oukahou, S.
    Maymoun, M.
    Sbiaai, K.
    Hasnaoui, A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (32) : 21699 - 21707
  • [30] First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries
    Wang, Hewen
    Wu, Musheng
    Tian, Zhengfang
    Xu, Bo
    Ouyang, Chuying
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):