Revisiting Graph-based Recommender Systems from the Perspective of Variational Auto-Encoder

被引:16
|
作者
Zhang, Yi [1 ]
Zhang, Yiwen [1 ]
Yan, Dengcheng [1 ]
Deng, Shuiguang [2 ]
Yang, Yun [3 ]
机构
[1] Anhui Univ, Hefei, Anhui, Peoples R China
[2] Zhejiang Univ, Hangzhou, Peoples R China
[3] Swinburne Univ Technol, Hawthorn, Vic, Australia
基金
中国国家自然科学基金;
关键词
Recommendation; collaborative filtering; Graph Neural Networks; Variational Inference;
D O I
10.1145/3573385
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph-based recommender system has attracted widespread attention and produced a series of research results. Because of the powerful high-order connection modeling capabilities of the Graph Neural Network, the performance of these graph-based recommender systems are far superior to those of traditional neural network-based collaborative filtering models. However, from both analytical and empirical perspectives, the apparent performance improvement is accompanied with a significant time overhead, which is noticeable in large-scale graph topologies. More importantly, the intrinsic data-sparsity problem substantially limits the performance of graph-based recommender systems, which compelled us to revisit graph-based recommendation from a novel perspective. In this article, we focus on analyzing the time complexity of graph-based recommender systems to make it more suitable for real large-scale application scenarios. We propose a novel end-to-end graph recommendation model called the Collaborative Variational Graph Auto-Encoder (CVGA), which uses the information propagation and aggregation paradigms to encode user-item collaborative relationships on the user-item interaction bipartite graph. These relationships are utilized to infer the probability distribution of user behavior for parameter estimation rather than learning user or item embeddings. By doing so, we reconstruct the whole user-item interaction graph according to the known probability distribution in a feasible and elegant manner. From the perspective of the graph auto-encoder, we convert the graph recommendation task into a graph generation problem and are able to do it with approximately linear time complexity. Extensive experiments on four real-world benchmark datasets demonstrate that CVGA can be trained at a faster speed while maintaining comparable performance over state-of-the-art baselines for graph-based recommendation tasks. Further analysis shows that CVGA can effectively mitigate the data sparsity problem and performs equally well on large-scale datasets.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Contrastive graph auto-encoder for graph embedding
    Zu, Shuaishuai
    Li, Li
    Shen, Jun
    Tang, Weitao
    NEURAL NETWORKS, 2025, 187
  • [22] Embedding Graph Auto-Encoder for Graph Clustering
    Zhang, Hongyuan
    Li, Pei
    Zhang, Rui
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 9352 - 9362
  • [23] GRAPH AUTO-ENCODER FOR GRAPH SIGNAL DENOISING
    Tien Huu Do
    Duc Minh Nguyen
    Deligiannis, Nikos
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3322 - 3326
  • [24] Polypharmacy side effect prediction based on semi-implicit graph variational auto-encoder
    Yi, Zhou
    Xie, Minzhu
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2024, 22 (04)
  • [25] Denoising Variational Graph of Graphs Auto-Encoder for Predicting Structured Entity Interactions
    Chen, Han
    Wang, Hanchen
    Chen, Hongmei
    Zhang, Ying
    Zhang, Wenjie
    Lin, Xuemin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (03) : 1016 - 1029
  • [26] Variational Auto-Encoder Combined with Knowledge Graph Zero-Shot Learning
    Zhang, Haitao
    Su, Lin
    Computer Engineering and Applications, 2023, 59 (01): : 236 - 243
  • [27] A trajectory outlier detection method based on variational auto-encoder
    Zhang, Longmei
    Lu, Wei
    Xue, Feng
    Chang, Yanshuo
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 15075 - 15093
  • [28] Anomaly detection method based on convolutional variational auto-encoder
    Yu X.
    Xu M.
    Wang Y.
    Wang S.
    Hu N.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (05): : 151 - 158
  • [29] An Improved Graph Convolutional Neural Network based on Graph Auto-encoder
    Wang, Dongqi
    Du, Tianqi
    Liu, Zhongwu
    Chen, Dongming
    Ren, Tao
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 442 - 446
  • [30] Detection Algorithm of the Mimicry Attack based on Variational Auto-Encoder
    Wang, Qunke
    Fang, Lanting
    Zhu, Zhenchao
    Huang, Jie
    51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN-W 2021), 2021, : 114 - 120