3D-printed HAp bone regeneration scaffolds enable nano-scale manipulation of cellular mechanotransduction signals

被引:32
|
作者
Wu, Lina [1 ,2 ]
Pei, Xuan [3 ]
Zhang, Boqing [1 ,2 ]
Su, Zixuan [1 ,2 ]
Gui, Xingyu [1 ,2 ]
Gao, Canyu [1 ,2 ]
Guo, Likun [1 ,2 ]
Fan, Hongyuan [4 ]
Jiang, Qing [1 ,2 ]
Zhao, Li [5 ,6 ]
Zhou, Changchun [1 ,2 ]
Fan, Yujiang [1 ,2 ]
Zhang, Xingdong [1 ,2 ]
机构
[1] Sichuan Univ, Natl Engn Res Ctr Biomat, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Coll Biomed Engn, Chengdu 610064, Peoples R China
[3] Sichuan Univ, West China Hosp, State Key Lab Biotherapy, Chengdu 610041, Peoples R China
[4] Sichuan Univ, Sch Mech Engn, Chengdu 610065, Peoples R China
[5] Sichuan Univ, West China Sch Publ Hlth, Chengdu 610041, Sichuan, Peoples R China
[6] Sichuan Univ, West China Hosp 4, Chengdu 610041, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Bone tissue engineering; Mechanotransduction; Nanorods; Scaffolds; 3D printing; PHOSPHATE;
D O I
10.1016/j.cej.2022.140699
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nano-scale morphology on bone tissue engineering scaffold plays an essential role in cell behavior regulation and bone regeneration. In this study, patient-customized porous bone tissue engineering scaffolds were fabricated by 3D printing. Then functionalized nanorod morphologies were controllably fabricated. The influence of nanorods geometrical cues on cellular behaviors and the mechanics of triggered osteogenesis were studied. In vitro studies indicated that the nanorods with a diameter of 30 nm accelerated cell proliferation and osteogenic differentia-tion. Yes-associated protein (YAP) was found involved in the cell sensing system, which regulates the cytoskeletal structure and gene expression. These results provided strong evidence that the surface nano-scale morphology triggered mechanotransduction related signals for promoting osteogenic differentiation. In vivo experiments indicated that the proposed 3D printed scaffolds with a nanorod coating promoted bone regeneration without exogenous cells and growth factors. This work provides a promising strategy for personalized bone tissue repair.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] 3D-printed Biomimetic Bioactive Glass Scaffolds for Bone Regeneration in Rat Calvarial Defects
    Kolan, Krishna C. R.
    Huang, Yue-Wern
    Semon, Julie A.
    Leu, Ming C.
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2020, 6 (02) : 1 - 17
  • [22] Bionic Mineralized 3D-Printed Scaffolds with Enhanced In Situ Mineralization for Cranial Bone Regeneration
    Wang, Ling
    Li, Dongxuan
    Huang, Yawen
    Mao, Ruiqi
    Zhang, Boqing
    Luo, Fengxiong
    Gu, Peiyang
    Song, Ping
    Ge, Xiang
    Lu, Jian
    Yang, Xusheng
    Fan, Yujiang
    Zhang, Xingdong
    Wang, Kefeng
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (03)
  • [23] 3D-printed cryomilled poly(ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration
    Dias, Daniela
    Vale, Ana C.
    Cunha, Eunice P. F.
    C. Paiva, Maria
    Reis, Rui L.
    Vaquette, Cedryck
    Alves, Natalia M.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2021, 109 (07) : 961 - 972
  • [24] Delivering Proangiogenic Factors from 3D-Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration
    Liu, Haoming
    Du, Yingying
    Yang, Gaojie
    Hu, Xixi
    Wang, Lin
    Liu, Bin
    Wang, Jianglin
    Zhang, Shengmin
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (23)
  • [25] 3D-Printed GelMA/PEGDA/F127DA Scaffolds for Bone Regeneration
    Gao, Jianpeng
    Li, Ming
    Cheng, Junyao
    Liu, Xiao
    Liu, Zhongyang
    Liu, Jianheng
    Tang, Peifu
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2023, 14 (02)
  • [26] 3D-printed porous titanium scaffolds incorporating niobium for high bone regeneration capacity
    Liang, Hang
    Zhao, Danlei
    Feng, Xiaobo
    Ma, Liang
    Deng, Xiangyu
    Han, Changjun
    Wei, Qingsong
    Yang, Cao
    MATERIALS & DESIGN, 2020, 194
  • [27] Osteoimmunomodulation unveiled: Enhancing bone regeneration with 3D-printed PLLA/β-TCP/CS scaffolds
    Cen, Chaode
    Wang, Chuan
    Zhang, Yong
    Hu, Chaoran
    Tang, Lingli
    Liu, Chengwei
    Cao, Yongfei
    Wang, Tao
    Peng, Wuxun
    Colloids and Surfaces B: Biointerfaces, 2025, 252
  • [28] Superhydrophilic 3D-printed scaffolds using conjugated bioresorbable nanocomposites for enhanced bone regeneration
    Dave, Khyati
    Mahmud, Zaheri
    Gomes, Vincent G.
    CHEMICAL ENGINEERING JOURNAL, 2022, 445
  • [29] 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration
    Huang Ting
    Fan Chunquan
    Zhu Min
    Zhu Yufang
    Zhang Weizhong
    Li Lei
    APPLIED SURFACE SCIENCE, 2019, 467 : 345 - 353
  • [30] Cu-MOF-Decorated 3D-Printed Scaffolds for Infection Control and Bone Regeneration
    Zhu, Ting
    Ni, Qi
    Wang, Wenjie
    Guo, Dongdong
    Li, Yixiao
    Chen, Tianyu
    Zhao, Dongyang
    Ma, Xingyu
    Zhang, Xiaojun
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2025, 16 (03)