Projectively coresolved Gorenstein flat dimension of groups

被引:3
|
作者
Stergiopoulou, Dimitra-Dionysia [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens 15784, Greece
关键词
Gorenstein homological algebra; Gorenstein flat module; Projectively coresolved Gorenstein; flat dimension; Group ring; Group extension; Cofibrant; FINITENESS; COHOMOLOGY;
D O I
10.1016/j.jalgebra.2023.10.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study the projectively core solved Gorenstein flat dimension of a group G over a commutative ring R and we prove that this dimension enjoys all the properties of the cohomological and the Gorenstein cohomological dimension. We also provide good estimations for the Gorenstein global dimension of RG in terms of this dimension and the Gorenstein global dimension of R. Moreover, we study special cases of groups, such as LHF-groups, and show that for such a group every Gorenstein projective RG-module is Gorenstein flat when the global dimension of R is finite.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:105 / 146
页数:42
相关论文
共 50 条
  • [31] GORENSTEIN DIMENSION AND AS-GORENSTEIN ALGEBRAS
    Ueyama, Kenta
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) : 4253 - 4268
  • [32] -Gorenstein projective, -Gorenstein injective and -Gorenstein flat modules
    Zhang, Zhen
    Zhu, Xiaosheng
    Yan, Xiaoguang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (01) : 115 - 124
  • [33] ON PROJECTIVELY FLAT SPECIAL (α, β)-METRIC
    Yadav, Ganga Prasad
    Akansha
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 13 (01): : 111 - 124
  • [34] PROJECTIVELY FLAT KLT VARIETIES
    Greb, Daniel
    Kebekus, Stefan
    Peternell, Thomas
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 1005 - 1036
  • [35] Projectively flat affine surfaces
    Binder T.
    Journal of Geometry, 2004, 79 (1-2) : 31 - 45
  • [36] On projectively flat Finsler spaces
    T. Q. Binh
    D. Cs. Kertész
    L. Tamássy
    Acta Mathematica Hungarica, 2013, 141 : 383 - 400
  • [37] On projectively flat Finsler spaces
    Binh, T. Q.
    Kertesz, D. Cs.
    Tamassy, L.
    ACTA MATHEMATICA HUNGARICA, 2013, 141 (04) : 383 - 400
  • [38] A CLASS OF PROJECTIVELY FLAT SURFACES
    OPOZDA, B
    MATHEMATISCHE ZEITSCHRIFT, 1995, 219 (01) : 77 - 92
  • [39] Some projectively flat (α, β)-metrics
    Yibing Shen
    Lili Zhao
    Science in China Series A, 2006, 49 : 838 - 851
  • [40] On a class of projectively flat (α, β)-metrics
    Cheng, Xinyue
    Li, Ming
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (1-2): : 195 - 205