共 50 条
Enhancing chemical stability and performance in proton-conducting solid oxide fuel cells through novel composite cathode design
被引:12
|作者:
Gao, Yongji
[1
]
Zhang, Mingming
[1
]
Fan, Lele
[2
]
Tao, Zetian
[1
]
机构:
[1] Univ South China, Sch Resources Environm & Safety Engn, Hengyang 421001, Hunan, Peoples R China
[2] Yancheng Inst Technol, Key Lab Adv Technol Environm Protect Jiangsu Prov, Yancheng 224051, Peoples R China
基金:
中国国家自然科学基金;
美国国家科学基金会;
关键词:
Solid oxide fuel cells;
Proton-conducting;
Composite cathode;
Density functional theoretical calculation;
METAL-ORGANIC FRAMEWORKS;
DOPED CERIA;
SINTERED OXIDES;
ELECTROLYTE;
D O I:
10.1016/j.jpowsour.2023.233576
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Thermal and chemical compatibility between the cathode and electrolyte is crucial for the development of proton-conducting solid oxide fuel cells (H-SOFCs). To tackle this challenge, composite cathodes are often prepared by mixing traditional cathode materials with BaZr0.1Ce0.7Y0.2O3+delta (BZCY) electrolyte material. However, it should be noted that BZCY has a propensity to react with water generated during cell operation. Thus, this article presents the recent findings on performance enhancement of H-SOFCs through the utilization of a novel composite cathode, consisting of La0.6Sr0.4Co0.2Fe0.8O3+delta (LSCF) and La2-xNixCe2O7-delta (LNCOx) (x = 0.1, 0.2, 0.3, 0.4). The novel composite LSCF-LNCO0.3 cathode has shown significant improvements in the catalytic activity and durability, achieving a maximum power density of 1283 mW cm-2 at 700 degrees C. Density functional theoretical calculation (DFT) results reveal that the Ni doping in La2Ce2O7+delta (LCO) can effectively reduce the proton migration energy and enhance hydration ability, thereby obtaining high cathode performance. Compared traditional cathode design strategy, a novel design strategy involving the adjustment of the electrolyte component shows great potential for further advancement in cell performance.
引用
收藏
页数:8
相关论文