A perspective on cathode materials for proton-conducting solid oxide fuel cells

被引:0
|
作者
Guo, Zhiguo [1 ,2 ]
Xu, Ling [2 ]
Ling, Yihan [3 ]
Wang, Peixiang [2 ]
Wei, Kangwei [1 ,2 ]
Qiu, Peng [4 ]
机构
[1] Jiangxi Univ Sci & Technol, Jiangxi Prov Key Lab Safe & Efficient Min Rare Met, Ganzhou 341000, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Emergency Management & Safety Engn, Ganzhou 341000, Peoples R China
[3] China Univ Min & Technol, Sch Mat Sci & Phys, Xuzhou 221116, Peoples R China
[4] Shandong Univ Sci & Technol, Sch Mat Sci & Engn, Qingdao 266590, Peoples R China
关键词
PCFCs; Composite cathodes; Triple conduction; Proton absorption; Conduction mechanisms; OXYGEN REDUCTION REACTION; HIGH-PERFORMANCE CATHODE; COMPOSITE CATHODE; STRUCTURED LA0.6SR0.4CO0.2FE0.8O3-DELTA; CHEMICAL-STABILITY; STEAM ELECTROLYSIS; PEROVSKITE CATHODE; PROMISING CATHODE; RECENT PROGRESS; POWER-DENSITY;
D O I
10.1016/j.ijhydene.2025.01.461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton-conducting solid oxide fuel cells (PCFCs) offer enhanced operational efficiencies at low and intermediate temperatures (400-700 degrees C) compared to traditional oxygen-ion conducting solid oxide fuel cells, making them as highly attractive electrochemical devices. PCFCs prevent fuel dilution by efficiently converting hydrogen or hydrogen-containing fuels into electrical energy, producing water at the cathode. Nevertheless, reducing the operating temperature can lead to decreased ion mobility, reduced electrode reaction kinetics, and increased losses at the electrodes, particularly the cathode. This underscores the necessity to strategically design highperformance cathode materials and deepen the understanding of the conduction mechanisms underpinning PCFCs. This review comprehensively examines oxides employed in the PCFC cathode domain, with a special focus on composites exhibiting triple conduction properties (i.e., H+/O2-/e-). To guide future material development, the manuscript highlights proton absorption and conduction mechanisms, as well as explores the relationship between the microstructure and the corresponding properties, and evaluates the chemical stability of the cathode material for PCFC in environments containing H2O-CO2. By comparing the impacts of various types of cathode materials on application performance, the study establishes a robust foundation for material selection and optimization. Finally, the potential for developing high-performance PCFCs is projected.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 50 条
  • [1] A review on cathode materials for conventional and proton-conducting solid oxide fuel cells
    Tahir, Nur Nadhihah Mohd
    Baharuddin, Nurul Akidah
    Samat, Abdullah Abdul
    Osman, Nafisah
    Somalu, Mahendra Rao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 894
  • [2] Triple-Conducting Layered Perovskites as Cathode Materials for Proton-Conducting Solid Oxide Fuel Cells
    Kim, Junyoung
    Sengodan, Sivaprakash
    Kwon, Goeun
    Ding, Dong
    Shin, Jeeyoung
    Liu, Meilin
    Kim, Guntae
    CHEMSUSCHEM, 2014, 7 (10) : 2811 - 2815
  • [3] A functionally graded cathode for proton-conducting solid oxide fuel cells
    Yang, Chunli
    Xu, Qiming
    JOURNAL OF POWER SOURCES, 2012, 212 : 186 - 191
  • [4] A highly efficient composite cathode for proton-conducting solid oxide fuel cells
    Bu, Yunfei
    Joo, Sangwook
    Zhang, Yanxiang
    Wang, Yifan
    Meng, Dandan
    Ge, Xinlei
    Kim, Guntae
    JOURNAL OF POWER SOURCES, 2020, 451
  • [5] Infiltrated multiscale porous cathode for proton-conducting solid oxide fuel cells
    Zhao, Fei
    Liu, Qiang
    Wang, Siwei
    Chen, Fanglin
    JOURNAL OF POWER SOURCES, 2011, 196 (20) : 8544 - 8548
  • [6] Novel triple-phase composite cathode materials for proton-conducting solid oxide fuel cells
    Jiang, Qiumei
    Cheng, Jigui
    Wang, Rui
    Fan, Yumeng
    Gao, Jianfeng
    JOURNAL OF POWER SOURCES, 2012, 206 : 47 - 52
  • [7] Topological Ion Optimized Composite Cathode for Proton-Conducting Solid Oxide Fuel Cells
    Tang, Shurui
    Fu, Min
    Qin, Zhenhao
    Gao, Yang
    Tao, Zetian
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [8] A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells
    Xu, Yangsen
    Xu, Xi
    Bi, Lei
    JOURNAL OF ADVANCED CERAMICS, 2022, 11 (05) : 794 - 804
  • [9] A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells
    Yangsen XU
    Xi XU
    Lei BI
    JournalofAdvancedCeramics, 2022, 11 (05) : 794 - 804
  • [10] Proton-Blocking Composite Cathode for Proton-Conducting Solid Oxide Fuel Cell
    Sun, Wenping
    Fang, Shumin
    Yan, Litao
    Liu, Wei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (11) : B1432 - B1438