Analysis of the MAC scheme for the three dimensional Stokes problem

被引:5
|
作者
Xu, Minqiang [1 ]
Liu, Kai [2 ]
Zhang, Lei [1 ]
机构
[1] Zhejiang Univ Technol, Coll Sci, Hangzhou 310023, Peoples R China
[2] East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
MAC; FVEM; 3D-Stokes equations; Superconvergence; Optimal error estimate; FINITE-ELEMENT-METHOD; EQUATIONS; SUPERCONVERGENCE; CONVERGENCE;
D O I
10.1016/j.apnum.2023.07.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a marker and cell method (MAC) with a proper quadrature scheme over non-uniform cuboid grids by using a staggered finite volume element method (FVEM) for 3D Stokes equations. The stability of the proposed MAC scheme is proven under Petrov-Galerkin method. By establishing a connection between MAC and FVEM, we rigorously prove the superconvergence property and the optimal order L2 error estimate. Finally, numerical results verify our theoretical findings.& COPY; 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 50 条
  • [21] Numerical analysis of a stable discontinuous Galerkin scheme for the hydrostatic Stokes problem
    Guillen-Gonzalez, Francisco
    Victoria Redondo-Neble, M.
    Rafael Rodriguez-Galvan, J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2021, 29 (02) : 103 - 118
  • [22] MAC Prioritization Scheme Resolving Unfairness Problem
    Cho, Sunghwan
    Hong, Wooyoung
    Choi, Yeongyoon
    Kim, Yongchul
    Lim, Wontaek
    2013 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2013): FUTURE CREATIVE CONVERGENCE TECHNOLOGIES FOR NEW ICT ECOSYSTEMS, 2013, : 748 - 753
  • [23] Bounds on outputs of the exact weak solution of the three-dimensional Stokes problem
    Cheng, Zhong
    Ghomeshi, Shahin
    Paraschivoiu, Marius
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 61 (10) : 1098 - 1131
  • [24] Analysis of the numerical scheme of the one-dimensional fractional Rayleigh-Stokes model arising in a heated generalized problem
    Mesgarani, H.
    Aghdam, Y. Esmaeelzade
    Khoshkhahtinat, M.
    Farnam, B.
    AIP ADVANCES, 2023, 13 (08)
  • [25] Three-dimensional unstructured adaptive multigrid scheme for the Navier-Stokes equations
    Braaten, ME
    Connell, SD
    AIAA JOURNAL, 1996, 34 (02) : 281 - 290
  • [26] Analysis of an optimal control problem for the three-dimensional coupled modified Navier-Stokes and Maxwell equations
    Gunzburger, Max
    Trenchea, Catalin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 295 - 310
  • [27] Second Order Convergence of a Modified MAC Scheme for Stokes Interface Problems
    Dong, Haixia
    Zhao, Zhongshu
    Li, Shuwang
    Ying, Wenjun
    Zhang, Jiwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (01)
  • [28] CONVERGENCE OF THE MAC SCHEME FOR THE COMPRESSIBLE STATIONARY NAVIER-STOKES EQUATIONS
    Gallouet, T.
    Herbin, R.
    Latche, J. -C.
    Maltese, D.
    MATHEMATICS OF COMPUTATION, 2018, 87 (311) : 1127 - 1163
  • [29] Second Order Convergence of a Modified MAC Scheme for Stokes Interface Problems
    Haixia Dong
    Zhongshu Zhao
    Shuwang Li
    Wenjun Ying
    Jiwei Zhang
    Journal of Scientific Computing, 2023, 96
  • [30] Error estimates for the implicit MAC scheme for the compressible Navier–Stokes equations
    Thierry Gallouët
    David Maltese
    Antonin Novotny
    Numerische Mathematik, 2019, 141 : 495 - 567