Soft pneumatic actuators with integrated resistive sensors enabled by multi-material 3D printing

被引:17
|
作者
Dezaki, Mohammadreza Lalegani [1 ]
Sales, Rylz [1 ]
Zolfagharian, Ali [2 ]
Yazdani Nezhad, Hamed [3 ,4 ]
Bodaghi, Mahdi [1 ]
机构
[1] Nottingham Trent Univ, Sch Sci & Technol, Dept Engn, Nottingham NG11 8NS, England
[2] Deakin Univ, Sch Engn, Geelong 3216, Australia
[3] Univ Leeds, Fac Engn & Phys Sci, Leeds LS2 9JT, England
[4] City Univ London, Sch Sci & Technol, Adv Composites Res Focused Grp, London EC1 0HB, England
关键词
3D/4D printing; Multi-material printing; Soft pneumatic actuators; Soft sensors; Fused deposition modelling;
D O I
10.1007/s00170-023-12181-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
\The concept of soft robots has garnered significant attention in recent studies due to their unique capability to interact effectively with the surrounding environment. However, as the number of innovative soft pneumatic actuators (SPAs) continues to rise, integrating traditional sensors becomes challenging due to the complex and unrestricted movements exhibited by SPA during their operation. This article explores the importance of utilising one-shot multi-material 3D printing to integrate soft force and bending sensors into SPAs. It highlights the necessity of a well-tuned and robust low-cost fabrication process to ensure the functionality of these sensors over an extended period. Fused deposition modelling (FDM) offers a cost-effective solution for embedding sensors in soft robots, directly addressing such necessity. Also, a finite element method (FEM) based on the nonlinear hyper-elastic constitutive model equipped with experimental input is developed to precisely predict the deformation and tip force of the actuators measured in experiments. The dynamic mechanical test is conducted to observe and analyse the behaviour and resistance changes of conductive thermoplastic polyurethane (CTPU) and varioShore TPU (VTPU) during a cyclic test. The flexible sensor can detect deformations in SPAs through the application of air pressure. Similarly, the force sensor exhibits the ability to detect grasping objects by detecting changes in resistance. These findings suggest that the resistance change corresponds directly to the magnitude of the mechanical stimuli applied. Thus, the device shows potential for functioning as a resistive sensor for soft actuation. Furthermore, these findings highlight the significant potential of 3D and 4D printing technology in one-shot fabrication of soft sensor-actuator robotic systems, suggesting promising applications in various fields like grippers with sensors and rehabilitation devices.
引用
收藏
页码:4207 / 4221
页数:15
相关论文
共 50 条
  • [41] 3D Printed Helical Soft Pneumatic Actuators
    Hu, Weiping
    Li, Weihua
    Alici, Gursel
    2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2018, : 950 - 955
  • [42] ACTIVE MIXING NOZZLE FOR MULTI-MATERIAL AND MULTI-SCALE 3D PRINTING
    Lan, Hongbo
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 2, 2017,
  • [43] Multi-color and Multi-Material 3D Printing of Knee Joint models
    Ruiz, Oliver Grimaldo
    Dhaher, Yasin
    3D PRINTING IN MEDICINE, 2021, 7 (01)
  • [44] Multi-color and Multi-Material 3D Printing of Knee Joint models
    Oliver Grimaldo Ruiz
    Yasin Dhaher
    3D Printing in Medicine, 7
  • [45] Miniature Pneumatic Actuators for Soft Robots by High-Resolution Multimaterial 3D Printing
    Zhang, Yuan-Fang
    Ng, Colin Ju-Xiang
    Chen, Zhe
    Zhang, Wang
    Panjwani, Sahil
    Kowsari, Kavin
    Yang, Hui Ying
    Ge, Qi
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10):
  • [46] Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing
    Chen, Tian
    Mueller, Jochen
    Shea, Kristina
    SCIENTIFIC REPORTS, 2017, 7
  • [47] Multi-material and Multi-dimensional 3D Printing for Biomedical Materials and Devices
    Jia An
    Kah Fai Leong
    Biomedical Materials & Devices, 2023, 1 (1): : 38 - 48
  • [48] Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing
    Tian Chen
    Jochen Mueller
    Kristina Shea
    Scientific Reports, 7
  • [49] 3D Printed Resistive Soft Sensors
    Shih, Benjamin
    Mayeda, Jason
    Huo, Zhaoyuan
    Christianson, Caleb
    Tolley, Michael T.
    2018 IEEE INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT), 2018, : 152 - 157
  • [50] Multi-material embedded 3D printing for one-step manufacturing of multifunctional components in soft robotics
    Li, Yixin
    Wu, Zhenfeng
    Chen, Yufeng
    Xian, Shuai
    Hong, Zicun
    Wang, Qixin
    Jiang, Pei
    Yu, Haoyong
    Zhong, Yong
    ADDITIVE MANUFACTURING, 2024, 85