FRN: Fusion and recalibration network for low-light image enhancement

被引:5
|
作者
Singh, Kavinder [1 ]
Pandey, Ashutosh [1 ]
Agarwal, Akshat [1 ]
Agarwal, Mohit Kumar [1 ]
Shankar, Aditya [1 ]
Parihar, Anil Singh [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Machine Learning Res Lab, Delhi, India
关键词
Low-light (LOL) image enhancement (LLIE); Deep learning-based network; Multi-exposure fusion; Multi-level feature extraction; Convolutional neural networks; MODEL;
D O I
10.1007/s11042-023-15908-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a Fusion and Recalibration Network (FRN) for low-light image enhancement. Firstly, The proposed method generates multi-exposure images from a single image to enhance low-light images. The proposed Feature Extraction Module (FEM) extracts multi-level features from an image. The proposed method uses Feature Augmentation Module (FAM), a U-net-like structure, to encode the multi-level features and assist in the reconstruction. The proposed Feature Fusion and Re-calibration Module (FFRM) re-calibrates and merges the features to provide an enhanced output image. The advantage of dynamically selecting features from extremely bright regions of the artificially darkened images and darker regions of the artificially brightened image results in a balanced output image. The proposed model was evaluated on various datasets and significantly outperformed most state-of-the-art techniques. Additionally, the experimental assessment shows that the proposed FRN model outperforms other quantitative and qualitative assessment approaches.
引用
收藏
页码:12235 / 12252
页数:18
相关论文
共 50 条
  • [31] DEANet: Decomposition Enhancement and Adjustment Network for Low-Light Image Enhancement
    Jiang, Yonglong
    Li, Liangliang
    Zhu, Jiahe
    Xue, Yuan
    Ma, Hongbing
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (04): : 743 - 753
  • [32] Low-Light Image Enhancement Network Based on Multiscale Interlayer Guidance and Reflection Component Fusion
    Yin, Mohan
    Yang, Jianbai
    IEEE ACCESS, 2024, 12 : 140185 - 140210
  • [33] Low-light image enhancement algorithm based on multi-channel fusion attention network
    Chen Q.
    Gu Y.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (14): : 2111 - 2122
  • [34] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [35] Deep Pyramid Network for Low-Light Endoscopic Image Enhancement
    Yue, Guanghui
    Gao, Jie
    Cong, Runmin
    Zhou, Tianwei
    Li, Leida
    Wang, Tianfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3834 - 3845
  • [36] Adaptive lightweight Transformer network for low-light image enhancement
    Meng, De
    Lei, Zhichun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (6-7) : 5365 - 5375
  • [37] Low-Light Image Enhancement via a Deep Hybrid Network
    Ren, Wenqi
    Liu, Sifei
    Ma, Lin
    Xu, Qianqian
    Xu, Xiangyu
    Cao, Xiaochun
    Du, Junping
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) : 4364 - 4375
  • [38] MTIE-Net: Multi-technology fusion of low-light image enhancement network
    Tao, Jing
    Wu, Hao
    Ni, Zhihao
    Jin, Zhongyang
    Zhong, Changhua
    PLOS ONE, 2024, 19 (02):
  • [39] TBEFN: A Two-Branch Exposure-Fusion Network for Low-Light Image Enhancement
    Lu, Kun
    Zhang, Lihong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 4093 - 4105
  • [40] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87