Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery

被引:22
|
作者
Sato, Kengo [1 ,2 ]
Hamada, Michiaki [3 ,4 ,5 ]
机构
[1] Senju Asahi cho, Adachi ku, Tokyo 1208551, Japan
[2] Tokyo Denki Univ, Tokyo, Japan
[3] Waseda Univ, Tokyo, Japan
[4] Natl Inst Adv Ind Sci & Technol, Tokyo, Japan
[5] Grad Sch Med, Nippon Med Sch, Tokyo, Japan
关键词
RNA informatics; RNA secondary structure prediction; RNA-based therapeutics; DYNAMIC-PROGRAMMING ALGORITHM; SMALL-MOLECULE INHIBITORS; TREE ADJOINING GRAMMARS; CONTEXT-FREE GRAMMARS; THERMODYNAMIC PARAMETERS; ACCURATE PREDICTION; PARTITION-FUNCTION; WEB SERVER; SEQUENCES; RFAM;
D O I
10.1093/bib/bbad186
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational analysis of RNA sequences constitutes a crucial step in the field of RNA biology. As in other domains of the life sciences, the incorporation of artificial intelligence and machine learning techniques into RNA sequence analysis has gained significant traction in recent years. Historically, thermodynamics-based methods were widely employed for the prediction of RNA secondary structures; however, machine learning-based approaches have demonstrated remarkable advancements in recent years, enabling more accurate predictions. Consequently, the precision of sequence analysis pertaining to RNA secondary structures, such as RNA-protein interactions, has also been enhanced, making a substantial contribution to the field of RNA biology. Additionally, artificial intelligence and machine learning are also introducing technical innovations in the analysis of RNA-small molecule interactions for RNA-targeted drug discovery and in the design of RNA aptamers, where RNA serves as its own ligand. This review will highlight recent trends in the prediction of RNA secondary structure, RNA aptamers and RNA drug discovery using machine learning, deep learning and related technologies, and will also discuss potential future avenues in the field of RNA informatics.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Review on RNA Secondary Structure Prediction Algorithms
    Oluoch, Ian Kings
    Akalin, Abdullah
    Vural, Yilmaz
    Canbay, Yavuz
    2018 INTERNATIONAL CONGRESS ON BIG DATA, DEEP LEARNING AND FIGHTING CYBER TERRORISM (IBIGDELFT), 2018, : 18 - 23
  • [22] Wfold: A new method for predicting RNA secondary structure with deep learning
    Yuan, Yongna
    Yang, Enjie
    Zhang, Ruisheng
    Computers in Biology and Medicine, 2024, 182
  • [23] A semi-supervised learning approach for RNA secondary structure prediction
    Yonemoto, Haruka
    Asai, Kiyoshi
    Hamada, Michiaki
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2015, 57 : 72 - 79
  • [25] A brief review of machine learning methods for RNA methylation sites prediction
    Wang, Hong
    Wang, Shuyu
    Zhang, Yong
    Bi, Shoudong
    Zhu, Xiaolei
    METHODS, 2022, 203 : 399 - 421
  • [26] Recent Advances in Machine Learning Based Prediction of RNA-Protein Interactions
    Sagar, Amit
    Xue, Bin
    PROTEIN AND PEPTIDE LETTERS, 2019, 26 (08): : 601 - 619
  • [27] Protein-RNA interaction prediction with deep learning: structure matters
    Wei, Junkang
    Chen, Siyuan
    Zong, Licheng
    Gao, Xin
    Li, Yu
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [28] Recent methodology progress of deep learning for RNA-protein interaction prediction
    Pan, Xiaoyong
    Yang, Yang
    Xia, Chun-Qiu
    Mirza, Aashiq H.
    Shen, Hong-Bin
    WILEY INTERDISCIPLINARY REVIEWS-RNA, 2019, 10 (06)
  • [29] PREDICTION OF RNA SECONDARY STRUCTURE
    DELISI, C
    CROTHERS, DM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1971, 68 (11) : 2682 - &
  • [30] Sequence similarity governs generalizability of de novo deep learning models for RNA secondary structure prediction
    Qiu, Xiangyun
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (04)