Transcriptome Analysis of Roots from Wheat (Triticum aestivum L.) Varieties in Response to Drought Stress

被引:4
|
作者
Xi, Wei [1 ,2 ,3 ]
Hao, Chenyang [3 ]
Li, Tian [3 ]
Wang, Huajun [1 ,2 ]
Zhang, Xueyong [1 ,2 ,3 ]
机构
[1] Gansu Agr Univ, Coll Agron, Lanzhou 730070, Peoples R China
[2] Gansu Agr Univ, State Key Lab Aridland Crop Sci, Gansu Key Lab Crop Improvement & Germplasm Enhance, Lanzhou 730070, Peoples R China
[3] Chinese Acad Agr Sci, Inst Crop Sci, Key Lab Crop Gene Resources & Germplasm Enhancemen, Minist Agr & Rural Affaris,Natl Key Facil Crop Gen, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
wheat; RNA-seq; DEGs; GO; stress treatment; RT-qPCR; RNA-SEQ; GENOME SEQUENCE; MECHANISMS; STRINGTIE; GENES;
D O I
10.3390/ijms24087245
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Under climate change, drought is one of the most limiting factors that influences wheat (Triticum aestivum L.) production. Exploring stress-related genes is vital for wheat breeding. To identify genes related to the drought tolerance response, two common wheat cultivars, Zhengmai 366 (ZM366) and Chuanmai 42 (CM42), were selected based on their obvious difference in root length under 15% PEG-6000 treatment. The root length of the ZM366 cultivar was significantly longer than that of CM42. Stress-related genes were identified by RNA-seq in samples treated with 15% PEG-6000 for 7 days. In total, 11,083 differentially expressed genes (DEGs) and numerous single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were identified. GO enrichment analysis revealed that the upregulated genes were mainly related to the response to water, acidic chemicals, oxygen-containing compounds, inorganic substances, and abiotic stimuli. Among the DEGs, the expression levels of 16 genes in ZM366 were higher than those in CM42 after the 15% PEG-6000 treatment based on RT-qPCR. Furthermore, EMS-induced mutants in Kronos (T. turgidum L.) of 4 representative DEGs possessed longer roots than the WT after the 15% PEG-6000 treatment. Altogether, the drought stress genes identified in this study represent useful gene resources for wheat breeding.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp under drought stress
    Arzanesh, M. H.
    Alikhani, H. A.
    Khavazi, K.
    Rahimian, H. A.
    Miransari, M.
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2011, 27 (02): : 197 - 205
  • [42] Screening of spring wheat (Triticum aestivum L.) germplasm against drought and heat stress
    Qureeshi, Muhammad Azher
    Hussain, Fida
    Noorka, Ijaz Rasool
    Rauf, Saeed
    CEREAL RESEARCH COMMUNICATIONS, 2021, 49 (03) : 365 - 374
  • [43] GABA Application Enhances Drought Stress Tolerance in Wheat Seedlings (Triticum aestivum L.)
    Zhao, Qiuyan
    Ma, Yan
    Huang, Xianqing
    Song, Lianjun
    Li, Ning
    Qiao, Mingwu
    Li, Tiange
    Hai, Dan
    Cheng, Yongxia
    PLANTS-BASEL, 2023, 12 (13):
  • [44] WHEAT (TRITICUM AESTIVUM L.) DROUGHT TOLERANCE INDICES UNDER WATER STRESS CONDITIONS
    Lal, K.
    Jatoi, W. A.
    Memon, S.
    Jatoi, I. A.
    Rind, S. N.
    Rajput, L.
    Khan, N. M.
    Khaskhali, I. A.
    Depar, M. S.
    Lund, M. I.
    Kaleri, M. H.
    Sarwar, M. K. S.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2024, 56 (01): : 232 - 245
  • [45] Silicon Mitigates Adverse Effects of Drought Stress in Wheat (Triticum aestivum L.) Seedlings
    Sienkiewicz-Cholewa, Urszula
    Sacala, Elzbieta
    Dziagwa-Becker, Magdalena
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2021, 30 (05): : 4657 - 4662
  • [46] Explicating drought tolerance of wheat (Triticum aestivum L.) through stress tolerance matrix
    Pandey, Ankita
    Masthigowda, Mamrutha Harohalli
    Kumar, Rakesh
    Mishra, Shalini
    Khobra, Rinki
    Pandey, Girish Chandra
    Singh, Gyanendra
    Singh, Gyanendra Pratap
    PLANT PHYSIOLOGY REPORTS, 2023, 28 (01) : 63 - 77
  • [47] STUDY OF THE BEHAVIOUR OF ANTIOXIDANT ENZYMES IN THE RESPONSE TO HARDENING AND FREEZING STRESS IN TWO WHEAT (TRITICUM AESTIVUM L.) VARIETIES
    Sasheva, Pavlina
    Szalai, Gabriella
    Janda, Tibor
    Popova, Losanka
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (12): : 1733 - 1740
  • [48] PGPR isolated from hot spring imparts resilience to drought stress in wheat ( Triticum aestivum L.)
    Ali, Nilofer
    Pati, Aparna Maitra
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 215
  • [49] High-throughput sequencing reveals microRNAs and their targets in response to drought stress in wheat (Triticum aestivum L.)
    Hua, Ye
    Zhang, Cheng
    Shi, Wanxi
    Chen, Hong
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2019, 33 (01) : 465 - 471
  • [50] PROLINE AND SPECIFIC ROOT LENGHT AS RESPONSE TO DROUGHT OF WHEAT LINES (Triticum aestivum L.)
    Barunawati, Nunun
    Maghfoer, Moch. Dawam
    Kendarini, Niken
    Aini, Nurul
    AGRIVITA, 2016, 38 (03): : 296 - 302