EEG-Based Seizure Prediction via Model Uncertainty Learning

被引:22
|
作者
Li, Chang [1 ,2 ]
Deng, Zhiwei [1 ,2 ]
Song, Rencheng [1 ,2 ]
Liu, Xiang [3 ]
Qian, Ruobing [3 ]
Chen, Xun [3 ,4 ]
机构
[1] Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Anhui Prov Key Lab Meauring Theory & Precis Instru, Hefei 230009, Anhui, Peoples R China
[3] Univ Sci & Technol China, Affiliated Hosp USTC 1, Epilepsy Ctr, Dept Neurosurg,Div Life Sci & Med, Hefei 230001, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230001, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalogram (EEG); seizure pre-diction; RepNet; modified Monte Carlo dropout (MMCD); model uncertainty learning; NEURAL-NETWORK; SYSTEM;
D O I
10.1109/TNSRE.2022.3217929
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep neural networks (DNNs) have the powerful ability to automatically extract efficient features, which makes them prominent in electroencephalogram (EEG) based seizure prediction tasks. However, current research in this field cannot take the model uncertainty into account, causing the prediction less credible. To this end, we introduce a novel end-to-end patient-specific seizure prediction framework via model uncertainty learning. Specifically, we propose a reparameterized EEG-based lightweight CNN architecture and a modified Monte Carlo dropout (RepNet-MMCD) strategy to improve the reliability of the DNNs-based model. In RepNet, we obtain multi-scale feature representations by applying depthwise separable convolutions of different kernels. After training, depthwise convolutions with different scales are equivalently converted into a single convolution layer, which can greatly reduce computational budgets without losing model performance. In addition, we propose a modified Monte Carlo (MMCD) strategy, leveraging the samples-based temporal information in EEG signals to simulate the Monte Carlo dropout sampling. Sensitivity, false-positive rate (FPR), and area under curve (AUC) of the proposed RepNet-MMCD achieve 93.1%, 0.033/h, 0.950 and 81.6%, 0.056/h, 0.903 on two public datasets, respectively. We further extend the MMCD strategy to the other baseline methods, which can improve the performance of seizure prediction by a clear margin.
引用
收藏
页码:180 / 191
页数:12
相关论文
共 50 条
  • [31] EEG-Based Seizure Prediction Using Hybrid DenseNet-ViT Network with Attention Fusion
    Yuan, Shasha
    Yan, Kuiting
    Wang, Shihan
    Liu, Jin-Xing
    Wang, Juan
    BRAIN SCIENCES, 2024, 14 (08)
  • [32] A Transfer Learning-based Model for Individualized Clustered Seizure Prediction Using Intracranial EEG
    Cao, Yurui
    Saboo, Krishnakant V.
    Kremen, Vaclav
    Sladky, Vladimir
    Gregg, Nicholas M.
    Arnold, Paul M.
    Pappu, Suguna
    Karoly, Philippa J.
    Freestone, Dean R.
    Cook, Mark J.
    Worrell, Gregory A.
    Iyer, Ravishankar K.
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [33] EEG-Based Emotional Video Classification via Learning Connectivity Structure
    Jang, Soobeom
    Moon, Seong-Eun
    Lee, Jong-Seok
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (02) : 1586 - 1597
  • [34] Multitask Learning for EEG-Based Biometrics
    Sun, Shiliang
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2743 - 2746
  • [35] EEG-based classification of learning strategies : model-based and model-free reinforcement learning
    Kim, Dongjae
    Weston, Charles
    Lee, Sang Wan
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 146 - 148
  • [36] Assessment of a scalp EEG-based automated seizure detection system
    Kelly, K. M.
    Shiau, D. S.
    Kern, R. T.
    Chien, J. H.
    Yang, M. C. K.
    Yandora, K. A.
    Valeriano, J. P.
    Halford, J. J.
    Sackellares, J. C.
    CLINICAL NEUROPHYSIOLOGY, 2010, 121 (11) : 1832 - 1843
  • [37] Classifier models and architectures for EEG-based neonatal seizure detection
    Greene, B. R.
    Marnane, W. P.
    Lightbody, G.
    Reilly, R. B.
    Boylan, G. B.
    PHYSIOLOGICAL MEASUREMENT, 2008, 29 (10) : 1157 - 1178
  • [38] EEG-based neonatal seizure detection with Support Vector Machines
    Temko, A.
    Thomas, E.
    Marnane, W.
    Lightbody, G.
    Boylan, G.
    CLINICAL NEUROPHYSIOLOGY, 2011, 122 (03) : 464 - 473
  • [39] Nonlinear Dimension Reduction for EEG-Based Epileptic Seizure Detection
    Birjandtalab, J.
    Pouyan, M. Baran
    Nourani, M.
    2016 3RD IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, 2016, : 595 - 598
  • [40] An Optimized EEG-Based Seizure Detection Algorithm for Implantable Devices
    Manzouri, Farrokh
    Khurana, Lakshay
    Kravalis, Kristina
    Stieglitz, Thomas
    Schulze-Bonhage, Andreas
    Duempelmann, Matthias
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 995 - 998