A Greedy Newton-Type Method for Multiple Sparse Constraint Problem

被引:0
|
作者
Sun, Jun [1 ]
Kong, Lingchen [2 ]
Qu, Biao [3 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276000, Peoples R China
[2] Beijing Jiaotong Univ, Dept Appl Math, Beijing 100044, Peoples R China
[3] Qufu Normal Univ, Inst Operat Res, Rizhao 276826, Shandong, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Multiple sparse; Stationary point; Gradient projection Newton algorithm; Convergence analysis; Numerical experiment;
D O I
10.1007/s10957-022-02156-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
With the development of science and technology, we can get many groups of data for the same object. There is a certain relationship with each other or structure between these data or within the data. To characterize the structure of the data in different datasets, in this paper, we propose a multiple sparse constraint problem (MSCP) to process the problem with multiblock sparse structure. We give three types of stationary points and present the relationships among the three types of stationary points and the global/local minimizers. Then we design a gradient projection Newton algorithm, which is proven to enjoy the global and quadratic convergence property. Finally, some numerical experiments of different examples illustrate the efficiency of the proposed method.
引用
下载
收藏
页码:829 / 854
页数:26
相关论文
共 50 条
  • [21] DINO: Distributed Newton-Type Optimization Method
    Crane, Rixon
    Roosta, Fred
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [22] Newton-type method for solving generalized inclusion
    Santos, P. S. M.
    Silva, G. N.
    Silva, R. C. M.
    NUMERICAL ALGORITHMS, 2021, 88 (04) : 1811 - 1829
  • [23] Newton-Type Greedy Selection Methods for l0-Constrained Minimization
    Yuan, Xiao-Tong
    Liu, Qingshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2437 - 2450
  • [24] DINO: Distributed Newton-Type Optimization Method
    Crane, Rixon
    Roosta, Fred
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [25] A global Newton-type scheme based on a simplified Newton-type approach
    Amrein, Mario
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 65 (1-2) : 321 - 334
  • [26] Newton-type method for solving generalized inclusion
    P. S. M. Santos
    G. N. Silva
    R. C. M. Silva
    Numerical Algorithms, 2021, 88 : 1811 - 1829
  • [27] NEWTON-TYPE MINIMIZATION VIA THE LANCZOS METHOD
    NASH, SG
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) : 770 - 788
  • [28] On Fractional Newton-Type Method for Nonlinear Problems
    Bayrak, Mine Aylin
    Demir, Ali
    Ozbilge, Ebru
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [29] A proximal Newton-type method for equilibrium problems
    P. J. S. Santos
    P. S. M. Santos
    S. Scheimberg
    Optimization Letters, 2018, 12 : 997 - 1009
  • [30] NEWTON-TYPE CURVILINEAR SEARCH METHOD FOR OPTIMIZATION
    BOTSARIS, CA
    JACOBSON, DH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 54 (01) : 217 - 229