Construction of Benzodithiophene-Based Donor-Acceptor-Type Covalent Triazine Frameworks with Tunable Structure for Photocatalytic Hydrogen Evolution

被引:20
|
作者
Cai, Bowei [1 ,2 ]
Cao, Lin [1 ]
Zhang, Roujia [1 ]
Xu, Naizhang [1 ,3 ]
Tang, Jie [1 ]
Wang, Kaiqiang [1 ]
Li, Qi [1 ]
Xu, Bolian [1 ,3 ]
Liu, Yubing [1 ,3 ]
Fan, Yining [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Jiangsu Prov Key Lab Vehicle Emiss Control, Nanjing 210023, Jiangsu, Peoples R China
[2] SINOPEC Zhenhai Refining & Chem Co, Ningbo 315207, Zhejiang, Peoples R China
[3] Nanjing Polytech Inst, Environm Engn Coll, Nanjing 210048, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent organic frameworks; donor-acceptor; benzodithiophene; charge transfer; photocatalytic hydrogen evolution; ORGANIC FRAMEWORKS; G-C3N4; NANOSHEETS; POLYMERS; DESIGN; TEMPERATURE; STRATEGY; BOOST;
D O I
10.1021/acsaem.2c03322
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The introduction of donor-acceptor (D-A) motifs into organic semiconductors has been considered as one of the effective strategies to regulate photocatalytic activity. Herein, D-A-type benzodithiophene-based covalent triazine framework materials (BDT-CTFs) have been reported. It has been shown that the valence band and conduction band positions, band gaps, and electron-hole separation efficiency can be adjusted by altering the D/A ratio in the BDT-CTF photocatalytic materials. It has been revealed that the high electron-hole separation, migration efficiency, and low electron-hole recombination rates, as well as the special D-A pore structures are the main reasons for the higher photocatalytic hydrogen evolution reaction (HER) activities of BDT-CTF-1 materials. This work revealed the structure-activity relationship in BDT-based CTFs with different D-A ratios, providing a strategy to develop organic photocatalysts with high performance.
引用
收藏
页码:930 / 938
页数:9
相关论文
共 50 条
  • [21] In-situ doping strategy for improving the photocatalytic hydrogen evolution performance of covalent triazine frameworks
    Chen, Minghui
    Xiong, Ji
    Li, Xiangyu
    Shi, Quan
    Li, Ting
    Feng, Yaqing
    Zhang, Bao
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (08) : 2363 - 2370
  • [22] In-situ doping strategy for improving the photocatalytic hydrogen evolution performance of covalent triazine frameworks
    Minghui Chen
    Ji Xiong
    Xiangyu Li
    Quan Shi
    Ting Li
    Yaqing Feng
    Bao Zhang
    Science China Chemistry, 2023, 66 : 2363 - 2370
  • [23] Donor-acceptor type triazine-based conjugated porous polymer for visible-light-driven photocatalytic hydrogen evolution
    Yu, Jie
    Sun, Xiaoqin
    Xu, Xiaoxiang
    Zhang, Chi
    He, Xiaoming
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 257
  • [24] Rational design of benzodifuran-functionalized donor-acceptor covalent organic frameworks for photocatalytic hydrogen evolution from water†
    Wang, Guang-Bo
    Zhu, Fu-Cheng
    Lin, Qian-Qian
    Kan, Jing-Lan
    Xie, Ke-Hui
    Li, Sha
    Geng, Yan
    Dong, Yu-Bin
    CHEMICAL COMMUNICATIONS, 2021, 57 (36) : 4464 - 4467
  • [25] Hydroxyl-based donor-acceptor covalent triazine frameworks as efficient platforms for in-situ photocatalytic U(VI) reduction
    Guo, Ruoxuan
    Huo, Yingzhong
    Song, Liping
    Liu, Yang
    Wen, Tao
    Zhang, Sai
    Ai, Yuejie
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 365
  • [26] Dual-Acceptor Engineering in Pyrene-Based Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution
    Liu, Nengyi
    Xie, Shuailei
    Huang, Yuxing
    Lu, Jiaping
    Shi, Hongjie
    Xu, Shumeng
    Zhang, Guigang
    Chen, Xiong
    ADVANCED ENERGY MATERIALS, 2024, 14 (40)
  • [27] Covalent triazine frameworks based on different stacking model as electrocatalyst for hydrogen evolution
    Zhao, Ying
    Li, Tong
    Gu, Jianmin
    Zhang, Bin
    Zhai, Pengda
    Xue, Zilu
    Gao, Huimin
    Li, Qing
    APPLIED SURFACE SCIENCE, 2023, 618
  • [28] Impact of Imine Bond Orientations and Acceptor Groups on Photocatalytic Hydrogen Generation of Donor-Acceptor Covalent Organic Frameworks
    Han, Chao-Qin
    Guo, Jia-Xin
    Sun, Shuai
    Wang, Ze-Yang
    Wang, Lei
    Liu, Xiao-Yuan
    SMALL, 2024, 20 (49)
  • [29] Increasing Donor-Acceptor Interactions and Particle Dispersibility of Covalent Triazine Frameworks for Higher Crystallinity and Enhanced Photocatalytic Activity
    Wang, Hao
    Shi, Lanting
    Qu, Zhi
    Zhang, Lingfeng
    Wang, Xiao
    Wang, Yefeng
    Liu, Shuai
    Ma, Haixia
    Guo, Zhaoqi
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (02) : 2296 - 2308
  • [30] A 1,3,5-triazine and benzodithiophene based donor-acceptor type semiconducting conjugated polymer for photocatalytic overall water splitting
    Yi, Fangli
    Yang, Qing
    Li, Xinyu
    Yuan, Yiqi
    Cao, Hongmei
    Liu, Kewei
    Yan, Hongjian
    JOURNAL OF SOLID STATE CHEMISTRY, 2023, 318