Explicit bounds for the high-frequency time-harmonic Maxwell equations in heterogeneous media

被引:0
|
作者
Chaumont-Frelet, Theophile [1 ]
Moiola, Andrea [2 ]
Spence, Euan A. [3 ]
机构
[1] Univ Cote dAzur, Inria, CNRS, LJAD, 2004 Route Lucioles, F-06902 Valbonne, France
[2] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
基金
英国工程与自然科学研究理事会;
关键词
Maxwell; High frequency; Transmission problem; Heterogeneous media; Wellposedness; HELMHOLTZ-EQUATION; ELECTROMAGNETIC SCATTERING; LIPSCHITZ-DOMAINS; DIRICHLET PROBLEM; WELL-POSEDNESS; PRIORI BOUNDS; EXTERIOR; DECAY; FIELD; STABILIZATION;
D O I
10.1016/j.matpur.2023.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the time-harmonic Maxwell equations posed in R3. We prove a priori bounds on the solution for L infinity coefficients euro and mu satisfying certain monotonicity properties, with these bounds valid for arbitrarily-large frequency, and explicit in the frequency and properties of euro and mu. The class of coefficients covered includes (i) certain euro and mu for which well-posedness of the time-harmonic Maxwell equations had not previously been proved, and (ii) scattering by a penetrable C0 star-shaped obstacle where euro and mu are smaller inside the obstacle than outside. In this latter setting, the bounds are uniform across all such obstacles, and the first sharp frequency-explicit bounds for this problem at high-frequency.(c) 2023 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:183 / 218
页数:36
相关论文
共 50 条
  • [21] Time-Harmonic Maxwell’s Equations in Periodic Waveguides
    A. Kirsch
    B. Schweizer
    Archive for Rational Mechanics and Analysis, 2025, 249 (3)
  • [22] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [23] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [24] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [25] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [26] Discontinuous Galerkin methods for the time-harmonic Maxwell equations
    Houston, P
    Perugia, I
    Schneebeli, A
    Schötzau, D
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 483 - 492
  • [27] THE TIME-HARMONIC MAXWELL EQUATIONS IN A DOUBLY PERIODIC STRUCTURE
    DOBSON, D
    FRIEDMAN, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 166 (02) : 507 - 528
  • [28] CAUCHY PROBLEM FOR THE QUATERNIONIC TIME-HARMONIC MAXWELL EQUATIONS
    Sattorov, E. N.
    Ermamatova, Z. E.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C129 - C137
  • [29] COMPUTATIONAL HOMOGENIZATION OF TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Persson, Anna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B581 - B607
  • [30] Multiplicative block preconditioner for the time-harmonic Maxwell equations
    Huang, Zhuo-Hong
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (09): : 144 - 152