Enhancement of the critical heat flux for downward-facing saturated pool boiling on the reticular hollow shell structure surfaces

被引:1
|
作者
Zhong, Dawen [1 ]
Lian, Xuexin [1 ]
Shi, Haopeng [1 ,2 ]
Zhang, Junfeng [1 ]
Meng, Jian [3 ]
Zhang, Jingyu [1 ]
机构
[1] North China Elect Power Univ, Beijing Key Lab Pass Nucl Power Safety & Technol, Beijing 102206, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Nucl Sci & Engn, Shanghai 240200, Peoples R China
[3] Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Critical heat flux; Downward facing boiling; Boiling heat transfer coefficient; In vessel retention; Boiling heat transfer enhancement; HONEYCOMB POROUS PLATE; CHF ENHANCEMENT; COPPER; MODEL; ORIENTATION;
D O I
10.1016/j.applthermaleng.2023.121635
中图分类号
O414.1 [热力学];
学科分类号
摘要
In-vessel retention (IVR) technology was currently an effective strategy for retaining molten materials in the reactor pressure vessel (RPV) when the nuclear power plants occurred severe accident, further ensuring the integrity of RPV. The effectiveness of IVR depended on the critical heat flux (CHF) of external reactor vessel cooling (ERVC). A novel type of reticular hollow shell structure (RHS) was designed to meet this need. Five RHS surfaces were designed and the pool boiling heat transfer performance were investigated in saturated deionized water, the experimental inclination angles were 5 degrees, 30 degrees, 45 degrees, 60 degrees and 90 degrees. The boiling heat transfer coefficient (BHTC) and CHF were measured by steady-state heating and transient quenching methods. The experiment results showed that the CHF increased with the increase of inclination angles, and the CHF of all RHS surfaces were significantly enhanced compared with the plain surface. The maximum CHF value and the maximum CHF enhancement exhibited on surface 4, with a maximum CHF of 2992.2 kW/m2. When the inclination angle was 30 degrees, the maximum CHF could reach 2338.6 kW/m2, which was 160.3% enhancement over the plain surface. Surface 1 and surface 3 had better BHTCs, and the maximum values were 178.3 kW/(m2 & sdot;K) and 126.8 kW/ (m2 & sdot;K), respectively, which were much better than other structured surfaces. The RHS could form a gas-liquid conversion system, which was composed of cavities and alternating channels to increase the surface nucleation sites and accelerate the circulation of cooling water, thus obtained the high CHF and high BHTC characteristics. RHS provided a large enough CHF margin to ensure that the RPV was continuously cooled and its integrity was maintained. Finally, the behavior of bubbles generation, coalescence, sliding and detachment in reticular hollow shell structure were systematically analyzed.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Effect of finned structure on critical heat flux (CHF) in downward-face pool boiling
    Wang, Kai
    Erkan, Nejdet
    Okamoto, Koji
    MECHANICAL ENGINEERING JOURNAL, 2020, 7 (03):
  • [42] Influence of surface wettability increase induced by Gamma-ray irradiation on critical heat flux in downward-facing flow boiling
    Wang, Laishun
    Yuan, Yuan
    Erkan, Nejdet
    Gong, Haiguang
    Abdul, Khan R.
    Li, Fengchen
    Okamoto, Koji
    ANNALS OF NUCLEAR ENERGY, 2020, 142
  • [43] An analytical model for near-saturated pool boiling critical heat flux on vertical surfaces
    Mudawar, I
    Howard, AH
    Gersey, CO
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (10) : 2327 - 2339
  • [44] Critical heat flux enhancement on a downward face using porous honeycomb plate in saturated flow boiling
    Wang, Laishun
    Khan, Abdul R.
    Erkan, Nejdet
    Gong, Haiguang
    Okamoto, Koji
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 109 : 454 - 461
  • [45] CHF Enhancement by γ-Fe2O3 Nanofluids with Pool Boiling Condition on a Downward-Facing Plane
    Cai, Xintian
    Hsieh, Huai-En
    Zhang, Zhibo
    Wang, Shiqi
    Wang, Saikun
    NUCLEAR TECHNOLOGY, 2025, 211 (04) : 777 - 789
  • [46] Enhancement of critical heat flux using spherical porous bodies in saturated pool boiling of nanofluid
    Mori, Shoji
    Yokomatsu, Fumihisa
    Utaka, Yoshio
    APPLIED THERMAL ENGINEERING, 2018, 144 : 219 - 230
  • [47] Machine learning prediction of critical heat flux on downward facing surfaces
    Zhang, Junfeng
    Zhong, Dawen
    Shi, Haopeng
    Meng, Ji'an
    Chen, Lin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 191
  • [48] Machine learning prediction of critical heat flux on downward facing surfaces
    Zhang, Junfeng
    Zhong, Dawen
    Shi, Haopeng
    Meng, Ji'an
    Chen, Lin
    International Journal of Heat and Mass Transfer, 2022, 191
  • [49] Experimental study on pool boiling heat transfer characteristics of TiO2 nanofluids on a downward-facing surface
    Gao, Yuan
    Hsieh, Huai -En
    Zhang, Zhibo
    Wang, Shiqi
    Zhou, Zhe
    PROGRESS IN NUCLEAR ENERGY, 2022, 153
  • [50] Experimental study on critical heat flux on a downward-facing stainless steel disk in confined space
    Wu, Y. W.
    Su, G. H.
    Sugiyama, K.
    ANNALS OF NUCLEAR ENERGY, 2011, 38 (2-3) : 279 - 285