Lossy Compression via Sparse Regression Codes: An Approximate Message Passing Approach

被引:0
|
作者
Wu, Huihui [1 ]
Wang, Wenjie [1 ]
Liang, Shansuo [1 ]
Han, Wei [1 ]
Bai, Bo [1 ]
机构
[1] Huawei Tech Investment Co Ltd, Theory Lab, 2012 Labs, Hong Kong, Peoples R China
关键词
Lossy compression; sparse regression codes; approximate message passing; Gaussian rate-distortion; QUANTIZATION; PERFORMANCE;
D O I
10.1109/ITW55543.2023.10161626
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a low-complexity lossy compression scheme for Gaussian vectors, using sparse regression codes (SRC) and a novel decimated approximate message passing (AMP) encoder. The sparse regression codebook is characterized by a design matrix and each codeword is a linear combination of selected columns of the matrix. In order to enable the convergence of AMP for lossy compression, we incorporate the concept of decimation into the AMP algorithm for the first time. Further, we show that the power allocation technique is beneficial for improving the rate-distortion performance. The computational complexity of the proposed encoding is O(log n) per source sample for a length-n source vector, using a sub-Fourier design matrix. Moreover, the proposed AMP encoder inherently supports successively refinable compression. Simulation results show that the proposed decimated AMP encoder significantly outperforms the existing successive-approximation encoding [1] and approaches the rate-distortion limit in low-rate regime.
引用
收藏
页码:288 / 293
页数:6
相关论文
共 50 条
  • [41] Lossy Compression via Sparse Linear Regression: Performance Under Minimum-Distance Encoding
    Venkataramanan, Ramji
    Joseph, Antony
    Tatikonda, Sekhar
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) : 3254 - 3264
  • [42] Two-Dimensional Pattern-Coupled Sparse Bayesian Learning via Generalized Approximate Message Passing
    Fang, Jun
    Zhang, Lizao
    Li, Hongbin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (06) : 2920 - 2930
  • [43] Compressive Phase Retrieval via Generalized Approximate Message Passing
    Schniter, Philip
    Rangan, Sundeep
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (04) : 1043 - 1055
  • [44] Energy Efficient Sparse Bayesian Learning using Learned Approximate Message Passing
    Thomas, Christo Kurisummoottil
    Mundlamuri, Rakesh
    Murthy, Chandra R.
    Kountouris, Marios
    [J]. SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 271 - 275
  • [45] Optimality of Large MIMO Detection via Approximate Message Passing
    Jeon, Charles
    Ghods, Ramina
    Maleki, Arian
    Studer, Christoph
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1227 - 1231
  • [46] Compressive Imaging via Approximate Message Passing With Image Denoising
    Tan, Jin
    Ma, Yanting
    Baron, Dror
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (08) : 2085 - 2092
  • [47] Vector Approximate Message Passing with Sparse Bayesian Learning for Gaussian Mixture Prior
    Chengyao Ruan
    Zaichen Zhang
    Hao Jiang
    Jian Dang
    Liang Wu
    Hongming Zhang
    [J]. China Communications, 2023, 20 (05) : 57 - 69
  • [48] Hyperspectral Unmixing Via Turbo Bilinear Approximate Message Passing
    Vila, Jeremy
    Schniter, Philip
    Meola, Joseph
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2015, 1 (03) : 143 - 158
  • [49] Compressive Phase Retrieval via Generalized Approximate Message Passing
    Schniter, Philip
    Rangan, Sundeep
    [J]. 2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 815 - 822
  • [50] Vector Approximate Message Passing with Sparse Bayesian Learning for Gaussian Mixture Prior
    Ruan, Chengyao
    Zhang, Zaichen
    Jiang, Hao
    Dang, Jian
    Wu, Liang
    Zhang, Hongming
    [J]. CHINA COMMUNICATIONS, 2023, 20 (05) : 57 - 69