Ti3C2Tx MXene-SnO2 nanocomposite for superior room temperature ammonia gas sensor

被引:25
|
作者
Yu, Huimin [1 ,2 ]
Dai, Longhui [1 ]
Liu, Yangquan [1 ]
Zhou, Yue [1 ]
Fan, Ping [1 ,3 ]
Luo, Jingting [1 ,3 ]
Zhong, Aihua [1 ,3 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen Key Lab Adv Thin Films & Applicat, Shenzhen 518060, Peoples R China
[2] Shenyang Ligong Univ, Coll Equipment Engn, Shenyang 110159, Liaoning, Peoples R China
[3] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
SnO2; NH3 gas sensor; Room temperature; Sensing mechanism;
D O I
10.1016/j.jallcom.2023.171170
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently MXenes become the focus of emerging 2D layered materials family owing to their unique properties and promising potential in gas detection. However, the sensitivity and the stability of the pristine MXenes are poor due to their high carrier concentration and abundant active sites on the surface. Herein, superior NH3 sensors with high response and stability were successfully obtained by wrapping the SnO2 nanoparticles on Ti3C2Tx MXene nanosheets via a facile hydrothermal method. The nanostructures, morphologies, and compositions of the Ti3C2Tx MXene-SnO2 composite were systematically characterized by XRD, FTIR, SEM, TEM and XPS techniques. Results show that SnO2 nanoparticles with high specific surface area are uniformly dispersed on the Ti3C2Tx MXene surface, constructing loose heterostructure, which plays a crucial role in gas adsorption/desorption. In the Ti3C2Tx MXene-SnO2 heterostructure, the Ti3C2Tx MXene acts as a signal amplification channel for electron transfer in gas sensing reaction. The sensors exhibit excellent NH3 gas detection at room temperature. Response as high as 75% is observed for 500 ppm NH3 gas. Fast response and recovery times are also obtained, 109 and 342 s, respectively. Moreover, the sensing performances of the Ti3C2Tx MXene-SnO2 composite with various MXene ratios were systematically studied. It is found out that the 16.8%Ti3C2Tx-SnO2 based sensor shows the highest sensitivity in 10-100 ppm range, and the 9.1%Ti3C2Tx-SnO2 based sensor exhibits the widest detection range. In addition, the selectivity and repeatability were also studied, revealing high selectivity and stability of the Ti3C2Tx MXene-SnO2 composite. Thus, Ti3C2Tx-SnO2 composite provides a new material to design and develop superior room temperature NH3 gas sensors.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] NiO/Ti3C2Tx MXene nanocomposites sensor for ammonia gas detection at room temperature
    Yang, Jiacheng
    Gui, Yingang
    Wang, Yunfeng
    He, Shasha
    [J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 119 : 476 - 484
  • [2] Room-Temperature Ammonia Gas Sensor Based on Ti3C2Tx MXene/Graphene Oxide/CuO/ZnO Nanocomposite
    Seekaew, Yotsarayuth
    Kamlue, Supaporn
    Wongchoosuk, Chatchawal
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (10) : 9008 - 9020
  • [3] SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature
    Zijing Wang
    Fen Wang
    Angga Hermawan
    Yusuke Asakura
    Takuya Hasegawa
    Hiromu Kumagai
    Hideki Kato
    Masato Kakihana
    Jianfeng Zhu
    Shu Yin
    [J]. Journal of Materials Science & Technology, 2021, 73 (14) : 128 - 138
  • [4] SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature
    Wang, Zijing
    Wang, Fen
    Hermawan, Angga
    Asakura, Yusuke
    Hasegawa, Takuya
    Kumagai, Hiromu
    Kato, Hideki
    Kakihana, Masato
    Zhu, Jianfeng
    Yin, Shu
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 73 : 128 - 138
  • [5] Polymeric Ti3C2Tx MXene Composites for Room Temperature Ammonia Sensing
    Jin, Ling
    Wu, Chenglong
    Wei, Kang
    He, Lifang
    Gao, Hong
    Zhang, Hexin
    Zhang, Kui
    Asiri, Abdullah M.
    Alamry, Khalid A.
    Yang, Lei
    Chu, Xiangfeng
    [J]. ACS APPLIED NANO MATERIALS, 2020, 3 (12) : 12071 - 12079
  • [6] Two-dimensional Ti3C2Tx MXene/SnO nanocomposites: Towards enhanced response and selective ammonia vapor sensor at room temperature
    Yao, Lijia
    Tian, Xu
    Cui, Xiuxiu
    Zhao, Rongjun
    Xiao, Mingjing
    Wang, Bingsen
    Xiao, Xuechun
    Wang, Yude
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2022, 358
  • [7] Research Progress on Ammonia Sensors Based on Ti3C2Tx MXene at Room Temperature: A Review
    Cheng, Kaixin
    Tian, Xu
    Yuan, Shaorui
    Feng, Qiuyue
    Wang, Yude
    [J]. SENSORS, 2024, 24 (14)
  • [8] Flexible resistive NO2 gas sensor of SnO2@Ti3C2Tx MXene for room temperature application
    Liu, Xin
    Zhang, Hanmei
    Shen, Tao
    Sun, Jianbo
    [J]. CERAMICS INTERNATIONAL, 2024, 50 (01) : 2459 - 2466
  • [9] Ultrasensitive ammonia gas sensor based on Ti3C2Tx/Ti3AlC2 planar composite at room temperature
    Liu, Zhihua
    Han, Dan
    Liu, Lulu
    Li, Donghui
    Han, Xiaomei
    Chen, Yi
    Liu, Xiaoru
    Zhuo, Kai
    Cheng, Yongqiang
    Sang, Shengbo
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2023, 378
  • [10] Ti3C2Tx (MXene)-polyacrylamide nanocomposite films
    Naguib, Michael
    Saito, Tomonori
    Lai, Sophia
    Rager, Matthew S.
    Aytug, Tolga
    Paranthaman, M. Parans
    Zhao, Meng-Qiang
    Gogotsi, Yury
    [J]. RSC ADVANCES, 2016, 6 (76): : 72069 - 72073