Research Progress on Ammonia Sensors Based on Ti3C2Tx MXene at Room Temperature: A Review

被引:0
|
作者
Cheng, Kaixin [1 ]
Tian, Xu [1 ]
Yuan, Shaorui [1 ]
Feng, Qiuyue [1 ]
Wang, Yude [1 ,2 ]
机构
[1] Yunnan Univ, Sch Mat & Energy, Kunming 650091, Peoples R China
[2] Yunnan Univ, Yunnan Key Lab Carbon Neutral & Green Low Carbon T, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti3C2Tx MXene; gas sensors; ammonia; room-temperature; sensitivity mechanism; GAS SENSOR; NANOCOMPOSITES; FABRICATION; FIBERS; NH3; HETEROJUNCTION; TI3ALC2; PHASE;
D O I
10.3390/s24144465
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ammonia (NH3) potentially harms human health, the ecosystem, industrial and agricultural production, and other fields. Therefore, the detection of NH3 has broad prospects and important significance. Ti3C2Tx is a common MXene material that is great for detecting NH3 at room temperature because it has a two-dimensional layered structure, a large specific surface area, is easy to functionalize on the surface, is sensitive to gases at room temperature, and is very selective for NH3. This review provides a detailed description of the preparation process as well as recent advances in the development of gas-sensing materials based on Ti3C2Tx MXene for room-temperature NH3 detection. It also analyzes the advantages and disadvantages of various preparation and synthesis methods for Ti3C2Tx MXene's performance. Since the gas-sensitive performance of pure Ti3C2Tx MXene regarding NH3 can be further improved, this review discusses additional composite materials, including metal oxides, conductive polymers, and two-dimensional materials that can be used to improve the sensitivity of pure Ti3C2Tx MXene to NH3. Furthermore, the present state of research on the NH3 sensitivity mechanism of Ti3C2Tx MXene-based sensors is summarized in this study. Finally, this paper analyzes the challenges and future prospects of Ti3C2Tx MXene-based gas-sensitive materials for room-temperature NH3 detection.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Polymeric Ti3C2Tx MXene Composites for Room Temperature Ammonia Sensing
    Jin, Ling
    Wu, Chenglong
    Wei, Kang
    He, Lifang
    Gao, Hong
    Zhang, Hexin
    Zhang, Kui
    Asiri, Abdullah M.
    Alamry, Khalid A.
    Yang, Lei
    Chu, Xiangfeng
    ACS APPLIED NANO MATERIALS, 2020, 3 (12) : 12071 - 12079
  • [2] NiO/Ti3C2Tx MXene nanocomposites sensor for ammonia gas detection at room temperature
    Yang, Jiacheng
    Gui, Yingang
    Wang, Yunfeng
    He, Shasha
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 119 : 476 - 484
  • [3] Recent Progress in Ti3C2TX MXene-Based Flexible Pressure Sensors
    Wu, Zhengguo
    Wei, Lansheng
    Tang, Shuwei
    Xiong, Yutong
    Qin, Xiaoqian
    Luo, Jiwen
    Fang, Jiawei
    Wang, Xiaoying
    ACS NANO, 2021, 15 (12) : 18880 - 18894
  • [4] Ti3C2Tx MXene-SnO2 nanocomposite for superior room temperature ammonia gas sensor
    Yu, Huimin
    Dai, Longhui
    Liu, Yangquan
    Zhou, Yue
    Fan, Ping
    Luo, Jingting
    Zhong, Aihua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 962
  • [5] Refractive Index Sensors Based on Ti3C2Tx MXene Fibers
    Chen, Yuzhi
    Ge, Yanqi
    Huang, Weichun
    Li, Zhongjun
    Wu, Leiming
    Zhang, Han
    Li, Xuejin
    ACS APPLIED NANO MATERIALS, 2020, 3 (01) : 303 - 311
  • [6] Research Progress of Electromagnetic Shielding Performance of MXene (Ti3C2Tx) Composites
    Han, Yue
    Jia, Ying
    Chen, Guangxue
    INNOVATIVE TECHNOLOGIES FOR PRINTING AND PACKAGING, 2023, 991 : 621 - 635
  • [7] Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin
    Cao, Zherui
    Yang, Yina
    Zheng, Yinghui
    Wu, Wei
    Xu, Fangfang
    Wang, Ranran
    Sun, Jing
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (44) : 25314 - 25323
  • [8] Room-Temperature Ammonia Gas Sensor Based on Ti3C2Tx MXene/Graphene Oxide/CuO/ZnO Nanocomposite
    Seekaew, Yotsarayuth
    Kamlue, Supaporn
    Wongchoosuk, Chatchawal
    ACS APPLIED NANO MATERIALS, 2023, 6 (10) : 9008 - 9020
  • [9] Research progress in Ti3C2Tx MXene-based electromagnetic interference shielding material
    Wang Jing-feng
    Kang Hui
    Cheng Zhong-jun
    Xie Zhi-min
    Wang You-shan
    Liu Yu-yan
    Fan Zhi-min
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2021, 49 (06): : 14 - 25
  • [10] Applications of MXene (Ti3C2Tx) in photocatalysis: a review
    Li, Xing
    Bai, Yang
    Shi, Xian
    Su, Na
    Nie, Gongzhe
    Zhang, Rumeng
    Nie, Hongbo
    Ye, Liqun
    MATERIALS ADVANCES, 2021, 2 (05): : 1570 - 1594