Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens

被引:58
|
作者
Morris, John A.
Caragine, Christina
Daniloski, Zharko
Domingo, Julia
Barry, Timothy
Lu, Lu
Davis, Kyrie
Ziosi, Marcello
Glinos, Dafni A.
Hao, Stephanie
Mimitou, Eleni P.
Smibert, Peter
Roeder, Kathryn
Katsevich, Eugene
Lappalainen, Tuuli
Sanjana, Neville E.
机构
[1] New York Genome Center, New York, 10013, NY
[2] Department of Biology, New York University, New York, 10003, NY
[3] Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, 15213, PA
[4] Technology Innovation Lab., New York Genome Center, New York, 10013, NY
[5] Computational Biology Department, Carnegie Mellon University, Pittsburgh, 15213, PA
[6] Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, 19104, PA
[7] Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Stockholm
基金
加拿大健康研究院; 美国国家卫生研究院; 美国国家科学基金会;
关键词
TRANSCRIPTION FACTOR; VARIANTS; HEMATOPOIESIS; ASSOCIATION; EXPRESSION; DNA; STATISTICS; ANCESTRY; BASE; IDENTIFICATION;
D O I
10.1126/science.adh7699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most variants associated with complex traits and diseases identified by genome-wide association studies (GWAS) map to noncoding regions of the genome with unknown effects. Using ancestrally diverse, biobank-scale GWAS data, massively parallel CRISPR screens, and single-cell transcriptomic and proteomic sequencing, we discovered 124 cis-target genes of 91 noncoding blood trait GWAS loci. Using precise variant insertion through base editing, we connected specific variants with gene expression changes. We also identified trans-effect networks of noncoding loci when cis target genes encoded transcription factors or microRNAs. Networks were themselves enriched for GWAS variants and demonstrated polygenic contributions to complex traits. This platform enables massively parallel characterization of the target genes and mechanisms of human noncoding variants in both cis and trans.
引用
收藏
页码:705 / +
页数:18
相关论文
共 50 条
  • [31] Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer
    Zhou, Peipei
    Shi, Hao
    Huang, Hongling
    Sun, Xiang
    Yuan, Sujing
    Chapman, Nicole M.
    Connelly, Jon P.
    Lim, Seon Ah
    Saravia, Jordy
    Anil, K. C.
    Pruett-Miller, Shondra M.
    Chi, Hongbo
    NATURE, 2023, 624 (7990) : 154 - +
  • [32] Pooled Genome-Scale CRISPR Screens in Single Cells
    Schraivogel, Daniel
    Steinmetz, Lars M.
    Parts, Leopold
    ANNUAL REVIEW OF GENETICS, 2023, 57 : 223 - 244
  • [33] Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci
    Ord, Tiit
    Ounap, Kadri
    Stolze, Lindsey K.
    Aherrahrou, Redouane
    Nurminen, Valtteri
    Toropainen, Anu
    Selvarajan, Ilakya
    Lonnberg, Tapio
    Aavik, Einari
    Yla-Herttuala, Seppo
    Civelek, Mete
    Romanoski, Casey E.
    Kaikkonen, Minna U.
    CIRCULATION RESEARCH, 2021, 129 (02) : 240 - 258
  • [34] Protein Barcodes Enable High-Dimensional Single-Cell CRISPR Screens
    Wroblewska, Aleksandra
    Dhainaut, Maxime
    Ben-Zvi, Benjamin
    Rose, Samuel A.
    Park, Eun Sook
    Amir, El-Ad David
    Bektesevic, Anela
    Baccarini, Alessia
    Merad, Miriam
    Rahman, Adeeb H.
    Brown, Brian D.
    CELL, 2018, 175 (04) : 1141 - +
  • [35] Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens
    Noa Liscovitch-Brauer
    Antonino Montalbano
    Jiale Deng
    Alejandro Méndez-Mancilla
    Hans-Hermann Wessels
    Nicholas G. Moss
    Chia-Yu Kung
    Akash Sookdeo
    Xinyi Guo
    Evan Geller
    Suma Jaini
    Peter Smibert
    Neville E. Sanjana
    Nature Biotechnology, 2021, 39 : 1270 - 1277
  • [36] Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens
    Liscovitch-Brauer, Noa
    Montalbano, Antonino
    Deng, Jiale
    Mendez-Mancilla, Alejandro
    Wessels, Hans-Hermann
    Moss, Nicholas G.
    Kung, Chia-Yu
    Sookdeo, Akash
    Guo, Xinyi
    Geller, Evan
    Jaini, Suma
    Smibert, Peter
    Sanjana, Neville E.
    NATURE BIOTECHNOLOGY, 2021, 39 (10) : 1270 - +
  • [37] Characterization and bioinformatic filtering of ambient gRNAs in single-cell CRISPR screens using
    Liu, Siyan
    Hamilton, Marisa C.
    Cowart, Thomas
    Barrera, Alejandro
    Bounds, Lexi R.
    Nelson, Alexander C.
    Dornbaum, Sophie F.
    Riley, Julia W.
    Doty, Richard W.
    Allen, Andrew S.
    Crawford, Gregory E.
    Majoros, William H.
    Gersbach, Charles A.
    CELL GENOMICS, 2025, 5 (02):
  • [38] CRISPR Screens Uncover Genes that Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog
    Pusapati, Ganesh V.
    Kong, Jennifer H.
    Patel, Bhaven B.
    Krishnan, Arunkumar
    Sagner, Andreas
    Kinnebrew, Maia
    Briscoe, James
    Aravind, L.
    Rohatgi, Rajat
    DEVELOPMENTAL CELL, 2018, 44 (01) : 113 - +
  • [39] MAPPING GENES TO CARDIOVASCULAR SUSCEPTIBILITY LOCI AT A SINGLE-CELL RESOLUTION
    Van Der Laan, S. W.
    Slenders, L.
    Depuydt, M.
    Prange, K.
    Granneman, L.
    Elbersen, D.
    Boltjes, A.
    de Jager, S.
    Slutter, B.
    Bot, I.
    Winther, M.
    Kuiper, J.
    Mokry, M.
    Asselbergs, F.
    Pasterkamp, G.
    ATHEROSCLEROSIS, 2019, 287 : E21 - E21
  • [40] Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection
    Barry, Timothy
    Mason, Kaishu
    Roeder, Kathryn
    Katsevich, Eugene
    GENOME BIOLOGY, 2024, 25 (01):