Multiple-hypothesis testing rules for high-dimensional model selection and sparse-parameter estimation

被引:1
|
作者
Babu, Prabhu [1 ]
Stoica, Petre [2 ]
机构
[1] Indian Inst Technol, Ctr Appl Res Elect, Delhi 110016, India
[2] Uppsala Univ, Dept Informat Technol, Div Syst & Control, S-75237 Uppsala, Sweden
关键词
Model selection; Sparse parameter estimation; Mulitple hypothesis testing; FDR; FER; FALSE DISCOVERY RATE;
D O I
10.1016/j.sigpro.2023.109189
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of model selection for high-dimensional sparse linear regression models. We pose the model selection problem as a multiple-hypothesis testing problem and employ the methods of false discovery rate (FDR) and familywise error rate (FER) to solve it. We also present the reformulation of the FDR/FER-based approaches as criterion-based model selection rules and establish their relation to the extended Bayesian Information Criterion (EBIC), which is a state-of-the-art high-dimensional model selection rule. We use numerical simulations to show that the proposed FDR/FER method is well suited for high-dimensional model selection and performs better than EBIC.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A nested error regression model with high-dimensional parameter for small area estimation
    Lahiri, Partha
    Salvati, Nicola
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, : 212 - 239
  • [42] A STEPWISE REGRESSION METHOD AND CONSISTENT MODEL SELECTION FOR HIGH-DIMENSIONAL SPARSE LINEAR MODELS
    Ing, Ching-Kang
    Lai, Tze Leung
    STATISTICA SINICA, 2011, 21 (04) : 1473 - 1513
  • [43] RELATIVE COST BASED MODEL SELECTION FOR SPARSE HIGH-DIMENSIONAL LINEAR REGRESSION MODELS
    Gohain, Prakash B.
    Jansson, Magnus
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5515 - 5519
  • [44] Model selection in sparse high-dimensional vine copula models with an application to portfolio risk
    Nagler, T.
    Bumann, C.
    Czado, C.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 172 : 180 - 192
  • [45] Robust Information Criterion for Model Selection in Sparse High-Dimensional Linear Regression Models
    Gohain, Prakash Borpatra
    Jansson, Magnus
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2251 - 2266
  • [46] NEW IMPROVED CRITERION FOR MODEL SELECTION IN SPARSE HIGH-DIMENSIONAL LINEAR REGRESSION MODELS
    Gohain, Prakash B.
    Jansson, Magnus
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5692 - 5696
  • [47] Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data
    Aijun Yang
    Yuzhu Tian
    Yunxian Li
    Jinguan Lin
    Computational Statistics, 2020, 35 : 245 - 258
  • [48] Sparse Bayesian variable selection in kernel probit model for analyzing high-dimensional data
    Yang, Aijun
    Tian, Yuzhu
    Li, Yunxian
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2020, 35 (01) : 245 - 258
  • [49] Sparse Bayesian variable selection for classifying high-dimensional data
    Yang, Aijun
    Lian, Heng
    Jiang, Xuejun
    Liu, Pengfei
    STATISTICS AND ITS INTERFACE, 2018, 11 (02) : 385 - 395
  • [50] Testing Thresholds for High-Dimensional Sparse Random Geometric Graphs
    Liu, Siqi
    Mohanty, Sidhanth
    Schramm, Tselil
    Yang, Elizabeth
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 672 - 677