Loc-NeRF: Monte Carlo Localization using Neural Radiance Fields

被引:24
|
作者
Maggio, Dominic [1 ,2 ]
Abate, Marcus [1 ]
Shi, Jingnan [1 ]
Mario, Courtney [3 ]
Carlone, Luca [1 ]
机构
[1] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
[2] Draper, Percept & Embedded ML Grp, Cambridge, MA 02139 USA
[3] Draper, Draper Percept & Embedded ML Grp, Cambridge, MA USA
关键词
D O I
10.1109/ICRA48891.2023.10160782
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present Loc-NeRF, a real-time vision-based robot localization approach that combines Monte Carlo localization and Neural Radiance Fields (NeRF). Our system uses a pre-trained NeRF model as the map of an environment and can localize itself in real-time using an RGB camera as the only exteroceptive sensor onboard the robot. While neural radiance fields have seen significant applications for visual rendering in computer vision and graphics, they have found limited use in robotics. Existing approaches for NeRF-based localization require both a good initial pose guess and significant computation, making them impractical for real-time robotics applications. By using Monte Carlo localization as a workhorse to estimate poses using a NeRF map model, LocNeRF is able to perform localization faster than the state of the art and without relying on an initial pose estimate. In addition to testing on synthetic data, we also run our system using real data collected by a Clearpath Jackal UGV and demonstrate for the first time the ability to perform real-time and global localization (albeit over a small workspace) with neural radiance fields. We make our code publicly available at https://github.com/MIT-SPARK/Loc-NeRF.
引用
收藏
页码:4018 / 4025
页数:8
相关论文
共 50 条
  • [31] DoF-NeRF: Depth-of-Field Meets Neural Radiance Fields
    Wu, Zijin
    Li, Xingyi
    Peng, Juewen
    Lu, Hao
    Cao, Zhiguo
    Zhong, Weicai
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1718 - 1729
  • [32] Touching a NeRF: Leveraging Neural Radiance Fields for Tactile Sensory Data Generation
    Zhong, Shaohong
    Albini, Alessandro
    Jones, Oiwi Parker
    Maiolino, Perla
    Posner, Ingmar
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1618 - 1628
  • [33] E-NeRF: Neural Radiance Fields From a Moving Event Camera
    Klenk, Simon
    Koestler, Lukas
    Scaramuzza, Davide
    Cremers, Daniel
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1587 - 1594
  • [34] LB-NERF: LIGHT BENDING NEURAL RADIANCE FIELDS FOR TRANSPARENT MEDIUM
    Fujitomi, Taku
    Sakurada, Ken
    Hamaguchi, Ryuhei
    Shishido, Hidehiko
    Onishi, Masaki
    Kameda, Yoshinari
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2142 - 2146
  • [35] ViP-NeRF: Visibility Prior for Sparse Input Neural Radiance Fields
    Somraj, Nagabhushan
    Soundararajan, Rajiv
    PROCEEDINGS OF SIGGRAPH 2023 CONFERENCE PAPERS, SIGGRAPH 2023, 2023,
  • [36] SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting with Neural Radiance Fields
    Mirzaei, Ashkan
    Aumentado-Armstrong, Tristan
    Derpanis, Konstantinos G.
    Kelly, Jonathan
    Brubaker, Marcus A.
    Gilitschenski, Igor
    Levinshtein, Alex
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 20669 - 20679
  • [37] NEURAL RADIANCE FIELDS (NERF): REVIEW AND POTENTIAL APPLICATIONS TO DIGITAL CULTURAL HERITAGE
    Croce, V.
    Caroti, G.
    De Luca, L.
    Piemonte, A.
    Veron, P.
    29TH CIPA SYMPOSIUM DOCUMENTING, UNDERSTANDING, PRESERVING CULTURAL HERITAGE. HUMANITIES AND DIGITAL TECHNOLOGIES FOR SHAPING THE FUTURE, VOL. 48-M-2, 2023, : 453 - 460
  • [38] Stega4NeRF: cover selection steganography for neural radiance fields
    Dong, Weina
    Liu, Jia
    Chen, Lifeng
    Sun, Wenquan
    Pan, Xiaozhong
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (03) : 33031
  • [39] Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
    Barron, Jonathan T.
    Mildenhall, Ben
    Verbin, Dor
    Srinivasan, Pratul P.
    Hedman, Peter
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5460 - 5469
  • [40] SRes-NeRF: Improved Neural Radiance Fields for Realism and Accuracy of Specular Reflections
    Dai, Shufan
    Cao, Yangjie
    Duan, Pengsong
    Chen, Xianfu
    MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 306 - 317