Noether Currents and Generators of Local Gauge Transformations in the Covariant Canonical Formalism

被引:0
|
作者
Nakajima, Satoshi [1 ]
机构
[1] Mie Univ, Fac Engn, Dept Phys Engn, Tsu, Mie 5148507, Japan
关键词
D O I
10.7566/JPSJ.92.084001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate generators of local transformations in the covariant canonical formalism (CCF). The CCF treats space and time on an equal basis, regarding the differential forms as the basic variables. The conjugate forms & pi;A are defined as derivatives of the Lagrangian d-form L( A; d A) with respect to d & psi;A, namely A := @L=@d A, where & psi; A are p-form dynamical fields. The form-canonical equations are derived from the form-Legendre transformation of the Lagrangian form H := d A A A -L. We show that the Noether current form is the generator of an infinitesimal transformation & psi; A & RARR; & psi;A + & delta;& psi; A if the transformation of the Lagrangian form is given by & delta;L = dl and & delta;& psi;A and l depend only on & psi; A and the parameters. As an instance, we study the local gauge transformation for the gauge field and local Lorentz transformation for the second order formalism of gravity.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] ON CANONICAL PSEUDOTENSORS, SPARLING FORM AND NOETHER CURRENTS
    SZABADOS, LB
    CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (11) : 2521 - 2541
  • [22] GAUGE-COVARIANT CONFORMAL TRANSFORMATIONS
    JACKIW, R
    PHYSICAL REVIEW LETTERS, 1978, 41 (24) : 1635 - 1638
  • [23] Local exponents and infinitesimal generators of canonical transformations on Boson Fock spaces
    Hiroshima, F
    Ito, KR
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (04) : 547 - 571
  • [24] Gauge theory by canonical transformations
    Koenigstein, Adrian
    Kirsch, Johannes
    Stoecker, Horst
    Struckmeier, Juergen
    Vasak, David
    Hanauske, Matthias
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2016, 25 (07)
  • [25] Covariant canonical gauge theory of gravitation for fermions
    Struckmeier, Jurgen
    Vasak, David
    ASTRONOMISCHE NACHRICHTEN, 2021, 342 (05) : 745 - 764
  • [26] On Covariant and Canonical Hamiltonian Formalisms for Gauge Theories
    Corichi, Alejandro
    Reyes, Juan D.
    Vukasinac, Tatjana
    UNIVERSE, 2024, 10 (02)
  • [27] CANONICAL TRANSFORMATIONS AND COMMUTATORS IN THE LAGRANGIAN FORMALISM
    BERGMANN, PG
    GOLDBERG, I
    JANIS, A
    NEWMAN, E
    PHYSICAL REVIEW, 1956, 103 (03): : 807 - 813
  • [28] Canonical transformations and squeezing formalism in cosmology
    Grain, Julien
    Vennin, Vincent
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (02):
  • [29] COVARIANT CANONICAL FORMALISM FOR POLYNOMIAL SUPERGRAVITY IN ANY DIMENSION
    LERDA, A
    NELSON, JE
    REGGE, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1987, 2 (05): : 1643 - 1654
  • [30] Canonical Noether symmetries and commutativity properties for gauge systems
    Gràcia, X
    Pons, JM
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) : 7333 - 7351