Subspace State-Space Identification of Nonlinear Dynamical System Using Deep Neural Network with a Bottleneck

被引:4
|
作者
Yamada, Keito [1 ]
Maruta, Ichiro [1 ]
Fujimoto, Kenji [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Aeronaut & Astronaut, Kyoto, Japan
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 01期
关键词
Subspace State-Space Identification; Nonlinear System Identification; Model Predictive Control; Machine Learning; Deep Learning; MODEL-PREDICTIVE CONTROL;
D O I
10.1016/j.ifacol.2023.02.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new type of subspace state-space system identification method for nonlinear dynamical systems, which generates a model consisting of a state estimator and a predictor that can be directly used for model predictive control (MPC). The main feature of the proposed method is that it uses a neural network with a bottleneck layer between the state estimator and predictor to represent the input-output dynamics, and it is proven that the state of the dynamical system can be extracted from the bottleneck layer based on the observability of the target system. The training of the network is shown to be a natural nonlinear extension of the subspace state-space system identification method established for linear dynamical systems. This correspondence provides interpretability and optimality to the resulting model based on linear control theory. The usefulness of the proposed method and the interpretability of the model are demonstrated through an illustrative example of MPC. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (<THESTERM>https://creativecommons.org/licenses/by-ne-nd/4.0/</THESTERM>)
引用
收藏
页码:102 / 107
页数:6
相关论文
共 50 条
  • [41] Towards a state-space polytopic uncertainty description using subspace model identification techniques
    van den Boom, TJJ
    Haverkamp, BRJ
    [J]. PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 1807 - 1811
  • [42] IDENTIFICATION OF A CLASS OF NONLINEAR STATE-SPACE MODELS USING RPE TECHNIQUES
    ZHOU, WW
    BLANKE, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (03) : 312 - 316
  • [43] Deep subspace encoders for nonlinear system identification
    Beintema, Gerben I.
    Schoukens, Maarten
    Toth, Roland
    [J]. AUTOMATICA, 2023, 156
  • [44] Nonlinear Electronic/Photonic Component Modeling Using Adjoint State-Space Dynamic Neural Network Technique
    Sadrossadat, Sayed Alireza
    Gunupudi, Pavan
    Zhang, Qi-Jun
    [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2015, 5 (11): : 1679 - 1693
  • [45] Nonlinear System Identification Using Neural Network
    Arain, Muhammad Asif
    Ayala, Helon Vicente Hultmann
    Ansari, Muhammad Adil
    [J]. EMERGING TRENDS AND APPLICATIONS IN INFORMATION COMMUNICATION TECHNOLOGIES, 2012, 281 : 122 - +
  • [46] STATE-SPACE BASED NETWORK TOPOLOGY IDENTIFICATION
    Coutino, Mario
    Isufi, Elvin
    Maehara, Takanori
    Leus, Geert
    [J]. 28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1055 - 1059
  • [47] A flexible state-space model for learning nonlinear dynamical systems
    Svensson, Andreas
    Schon, Thomas B.
    [J]. AUTOMATICA, 2017, 80 : 189 - 199
  • [48] MIMO system identification: State-space and subspace approximations versus transfer function and instrumental variables
    Stoica, P
    Jansson, M
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (11) : 3087 - 3099
  • [49] Nuclear Norm Subspace Identification Of Continuous Time State-Space Models
    Varanasi, Santhosh Kumar
    Jampana, Phanindra
    [J]. IFAC PAPERSONLINE, 2018, 51 (01): : 530 - 535
  • [50] Identification of discrete linear system in state space form using neural network
    Wang, D
    Zilouchian, A
    [J]. ICCDCS 98: PROCEEDINGS OF THE 1998 SECOND IEEE INTERNATIONAL CARACAS CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS, 1998, : 338 - 342