Modified ridge-type estimator for the zero inflated negative binomial regression model

被引:2
|
作者
Akram, Muhammad Nauman [1 ]
Afzal, Nimra [2 ]
Amin, Muhammad [1 ]
Batool, Asia [1 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Bahauddin Zakariya Univ, Dept Stat, Multan, Pakistan
关键词
Multicollinearity; shrinkage parameters; ZINBLE; ZINBMRT; ZINBRE; POISSON REGRESSION; COUNT DATA; PERFORMANCE; SIMULATION; PARAMETER; ERRORS;
D O I
10.1080/03610918.2023.2179070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Zero-inflated negative binomial (ZINB) regression models are commonly used for count data that shows an over-dispersion and extra zeros. Multicollinearity is considered to be a significant issue in the estimation of parameters in the ZINB regression model. Thus, to alleviate the negative effects of multicollinearity, a new estimator called ZINB modified ridge type (ZINBMRT) estimator is proposed. Furthermore, we proposed some new approaches to estimate the shrinkage parameters for the ZINBMRT estimator. A Monte Carlo simulation study and illustrative example are given to show the superiority of the proposed ZINBMRT estimator over some of the existing estimation methods. Based on the findings of simulation study and example, it is observed that the proposed ZINBMRT estimator under different suggested parameters give a better performance over the other competitive estimators.
引用
收藏
页码:5305 / 5322
页数:18
相关论文
共 50 条
  • [41] Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model
    Garay, Aldo M.
    Lachos, Victor H.
    Bolfarine, Heleno
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) : 1148 - 1165
  • [42] Asymptotic properties of the maximum-likelihood estimator in zero-inflated binomial regression
    Diallo, Alpha Oumar
    Diop, Aliou
    Dupuy, Jean-Francois
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (20) : 9930 - 9948
  • [43] PTSD Symptom Severity, Cannabis, and Gender: A Zero-Inflated Negative Binomial Regression Model
    Rehder, Kristoffer
    Bowen, Sarah
    [J]. SUBSTANCE USE & MISUSE, 2019, 54 (08) : 1309 - 1318
  • [44] Combining modified ridge-type and principal component regression estimators
    Lukman, Adewale F.
    Ayinde, Kayode
    Oludoun, Olajumoke
    Onate, Clement A.
    [J]. SCIENTIFIC AFRICAN, 2020, 9
  • [45] Modified ridge-type estimator to combat multicollinearity: Application to chemical data
    Lukman, Adewale F.
    Ayinde, Kayode
    Binuomote, Samuel
    Clement, Onate A.
    [J]. JOURNAL OF CHEMOMETRICS, 2019, 33 (05)
  • [46] GEE type inference for clustered zero-inflated negative binomial regression with application to dental caries
    Kong, Maiying
    Xu, Sheng
    Levy, Steven M.
    Datta, Somnath
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 : 54 - 66
  • [47] Jeffreys Prior for Negative Binomial and Zero Inflated Negative Binomial Distributions
    Arnab Kumar Maity
    Erina Paul
    [J]. Sankhya A, 2023, 85 : 999 - 1013
  • [48] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Garay, Aldo M.
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Lachos, Victor H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1304 - 1318
  • [49] Jeffreys Prior for Negative Binomial and Zero Inflated Negative Binomial Distributions
    Maity, Arnab Kumar
    Paul, Erina
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 999 - 1013
  • [50] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Departamento de Estatstica, Universidade Estatual de Campinas, Brazil
    不详
    不详
    [J]. Comput. Stat. Data Anal, 3 (1304-1318):