End-to-end acceleration of the YOLO object detection framework on FPGA-only devices

被引:5
|
作者
Zhang, Dezheng [1 ,2 ]
Wang, Aibin [1 ,2 ]
Mo, Ruchan [1 ,2 ]
Wang, Dong [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Network Technol, Beijing Key Lab Adv Informat Sci, Beijing 100044, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2024年 / 36卷 / 03期
基金
北京市自然科学基金;
关键词
Convolution neural networks (CNN); Object detection; YOLOv2; Field-programmable gate array (FPGA); High-level synthesis (HLS); Accelerator architecture; Post-processing; CNN;
D O I
10.1007/s00521-023-09078-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection has been revolutionized by convolutional neural networks (CNNs), but their high computational complexity and heavy data access requirements make implementing these algorithms on edge devices challenging. To address this issue, we propose an efficient object detection accelerator for YOLO series algorithm. Our architecture utilizes multiple dimensions of parallelism to accelerate the convolution computation. We employ line-buffer-based parallel data caches and dedicated data access units to minimize off-chip bandwidth pressure. Additionally, our proposed design not only accelerates the convolutional computation, but also control-intensive post-processing to achieve low detection latency. We evaluate the final design on Xilinx V7-690t FPGA device, achieving a throughput of 525 GOP/s for a batch size of 1 and 914 GOP/s for a batch size equal to 2. Compared with state-of-the-art YOLOv2 and YOLOv3 implementations, our proposed accelerator offers up to 9x throughput improvement and 5x shorter latency.
引用
收藏
页码:1067 / 1089
页数:23
相关论文
共 50 条
  • [31] An End-to-End Framework For Universal Lesion Detection With Missing Annotations
    Bai, Xiaoyu
    Xia, Yong
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 411 - 415
  • [32] An End-to-End Lane Detection Framework Based on Geometry Transform
    Kou, Genghua
    Wang, Weida
    Yang, Chao
    Xiang, Changle
    Li, Ying
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 2456 - 2466
  • [33] Developing an end-to-end simulation framework of supernova neutrino detection
    Mori, Masamitsu
    Suwa, Yudai
    Nakazato, Ken'ichiro
    Sumiyoshi, Kohsuke
    Harada, Masayuki
    Harada, Akira
    Koshio, Yusuke
    Wendell, Roger A.
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (02):
  • [34] DHLA: Dynamic Hybrid Label Assignment for End-to-End Object Detection
    Hu, Zhiliang
    Chen, Si
    Hua, Yang
    Wang, Da-Han
    Zhu, Shunzhi
    Yan, Yan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1055 - 1069
  • [35] An End-to-End Cascaded Image Deraining and Object Detection Neural Network
    Wang, Kaige
    Wang, Tianming
    Qu, Jianchuang
    Jiang, Huatao
    Li, Qing
    Chang, Lin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 9541 - 9548
  • [36] SparseDet: Towards End-to-End 3D Object Detection
    Han, Jianhong
    Wan, Zhaoyi
    Liu, Zhe
    Feng, Jie
    Zhou, Bingfeng
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 781 - 792
  • [37] Towards Precise End-to-end Weakly Supervised Object Detection Network
    Yang, Ke
    Li, Dongsheng
    Dou, Yong
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8371 - 8380
  • [38] End-to-End Video Object Detection with Spatial-Temporal Transformers
    He, Lu
    Zhou, Qianyu
    Li, Xiangtai
    Niu, Li
    Cheng, Guangliang
    Li, Xiao
    Liu, Wenxuan
    Tong, Yunhai
    Ma, Lizhuang
    Zhang, Liqing
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1507 - 1516
  • [39] An End-to-End Transformer Model for 3D Object Detection
    Misra, Ishan
    Girdhar, Rohit
    Joulin, Armand
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2886 - 2897
  • [40] AN END-TO-END SCALABLE OBJECT DETECTION NETWORK FOR REMOTE SENSING IMAGES
    Duan, Yani
    Teng, Zhu
    Zhang, Baopeng
    Fan, Jianping
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 960 - 963