End-to-end acceleration of the YOLO object detection framework on FPGA-only devices

被引:5
|
作者
Zhang, Dezheng [1 ,2 ]
Wang, Aibin [1 ,2 ]
Mo, Ruchan [1 ,2 ]
Wang, Dong [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Network Technol, Beijing Key Lab Adv Informat Sci, Beijing 100044, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2024年 / 36卷 / 03期
基金
北京市自然科学基金;
关键词
Convolution neural networks (CNN); Object detection; YOLOv2; Field-programmable gate array (FPGA); High-level synthesis (HLS); Accelerator architecture; Post-processing; CNN;
D O I
10.1007/s00521-023-09078-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection has been revolutionized by convolutional neural networks (CNNs), but their high computational complexity and heavy data access requirements make implementing these algorithms on edge devices challenging. To address this issue, we propose an efficient object detection accelerator for YOLO series algorithm. Our architecture utilizes multiple dimensions of parallelism to accelerate the convolution computation. We employ line-buffer-based parallel data caches and dedicated data access units to minimize off-chip bandwidth pressure. Additionally, our proposed design not only accelerates the convolutional computation, but also control-intensive post-processing to achieve low detection latency. We evaluate the final design on Xilinx V7-690t FPGA device, achieving a throughput of 525 GOP/s for a batch size of 1 and 914 GOP/s for a batch size equal to 2. Compared with state-of-the-art YOLOv2 and YOLOv3 implementations, our proposed accelerator offers up to 9x throughput improvement and 5x shorter latency.
引用
收藏
页码:1067 / 1089
页数:23
相关论文
共 50 条
  • [1] End-to-end acceleration of the YOLO object detection framework on FPGA-only devices
    Dezheng Zhang
    Aibin Wang
    Ruchan Mo
    Dong Wang
    Neural Computing and Applications, 2024, 36 : 1067 - 1089
  • [2] Watch Only Once: An End-to-End Video Action Detection Framework
    Chen, Shoufa
    Sun, Peize
    Xie, Enze
    Ge, Chongjian
    Wu, Jiannan
    Ma, Lan
    Shen, Jiajun
    Luo, Ping
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8158 - 8167
  • [3] Sparse R-CNN: An End-to-End Framework for Object Detection
    Sun, Peize
    Zhang, Rufeng
    Jiang, Yi
    Kong, Tao
    Xu, Chenfeng
    Zhan, Wei
    Tomizuka, Masayoshi
    Yuan, Zehuan
    Luo, Ping
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 15650 - 15664
  • [4] End-to-End Object Detection with YOLOF
    Xi, Xing
    Huang, Yangyang
    Wu, Weiye
    Luo, Ronghua
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VII, ICIC 2024, 2024, 14868 : 101 - 112
  • [5] Enhanced Sparse Detection for End-to-End Object Detection
    Liao, Yongwei
    Chen, Gang
    Xu, Runnan
    IEEE ACCESS, 2022, 10 : 85630 - 85640
  • [6] EOOD: End-to-end oriented object detection
    Zhang, Caiguang
    Chen, Zilong
    Xiong, Boli
    Ji, Kefeng
    Kuang, Gangyao
    NEUROCOMPUTING, 2025, 621
  • [7] Intrinsic Explainability for End-to-End Object Detection
    Fernandes, Luis
    Fernandes, Joao N. D.
    Calado, Mariana
    Pinto, Joao Ribeiro
    Cerqueira, Ricardo
    Cardoso, Jaime S.
    IEEE ACCESS, 2024, 12 : 2623 - 2634
  • [8] What Makes for End-to-End Object Detection?
    Sun, Peize
    Jiang, Yi
    Xie, Enze
    Shao, Wenqi
    Yuan, Zehuan
    Wang, Changhu
    Luo, Ping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [9] FlexiGAN: An End-to-End Solution for FPGA Acceleration of Generative Adversarial Networks
    Yazdanbakhsh, Amir
    Brzozowski, Michael
    Khaleghi, Behnam
    Ghodrati, Soroush
    Samadi, Kambiz
    Kim, Nam Sung
    Esmaeilzadeh, Hadi
    PROCEEDINGS 26TH IEEE ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2018), 2018, : 65 - 72
  • [10] FlexCNN: An End-to-end Framework for Composing CNN Accelerators on FPGA
    Basalama, Suhail
    Sohrabizadeh, Atefeh
    Wang, Jie
    Guo, Licheng
    Cong, Jason
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2023, 16 (02)