Comprehensive Analysis over Centralized and Federated Learning-based Anomaly Detection in Networks with Explainable AI (XAI)

被引:1
|
作者
Rumesh, Yasintha [1 ]
Senevirathna, Thulitha Theekshana [2 ]
Porambage, Pawani [1 ,3 ]
Liyanage, Madhusanka [3 ]
Ylianttila, Mika [3 ]
机构
[1] VTT Tech Res Ctr, Espoo, Finland
[2] Univ Coll Dublin, Sch Comp Sci, Dublin, Ireland
[3] Univ Oulu, Oulu, Finland
基金
芬兰科学院; 爱尔兰科学基金会;
关键词
6G; Security; Privacy; Explainable AI; Centralized Learning; Federated Learning;
D O I
10.1109/ICC45041.2023.10278845
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Many forms of machine learning (ML) and artificial intelligence (AI) techniques are adopted in communication networks to perform all optimizations, security management, and decision-making tasks. Instead of using conventional black-box models, the tendency is to use explainable ML models that provide transparency and accountability. Moreover, Federate Learning (FL) type ML models are becoming more popular than the typical Centralized Learning (CL) models due to the distributed nature of the networks and security privacy concerns. Therefore, it is very timely to research how to find the explainability using Explainable AI (XAI) in different ML models. This paper comprehensively analyzes using XAI in CL and FL-based anomaly detection in networks. We use a deep neural network as the black-box model with two data sets, UNSW-NB15 and NSL-KDD, and SHapley Additive exPlanations (SHAP) as the XAI model. We demonstrate that the FL explanation differs from CL with the client anomaly percentage.
引用
收藏
页码:4853 / 4859
页数:7
相关论文
共 50 条
  • [41] Support Vector Based Anomaly Detection in Federated Learning
    Frasson, Massimo
    Malchiodi, Dario
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 274 - 287
  • [42] Comparative Analysis between Individual, Centralized, and Federated Learning for Smartwatch Based Stress Detection
    Fauzi, Muhammad Ali
    Yang, Bian
    Blobel, Bernd
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (10):
  • [43] Explainable machine learning for performance anomaly detection and classification in mobile networks
    Ramirez, Juan M.
    Diez, Fernando
    Rojo, Pablo
    Mancuso, Vincenzo
    Fernandez-Anta, Antonio
    COMPUTER COMMUNICATIONS, 2023, 200 : 113 - 131
  • [44] Utility Analysis about Log Data Anomaly Detection Based on Federated Learning
    Shin, Tae-Ho
    Kim, Soo-Hyung
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [45] Explainable Learning-Based Intrusion Detection Supported by Memristors
    Chen, Jingdi
    Zhang, Lei
    Riem, Joseph
    Adam, Gina
    Bastian, Nathaniel D.
    Lan, Tian
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 195 - 196
  • [46] XAI-FR: Explainable AI-Based Face Recognition Using Deep Neural Networks
    Ankit Rajpal
    Khushwant Sehra
    Rashika Bagri
    Pooja Sikka
    Wireless Personal Communications, 2023, 129 : 663 - 680
  • [47] A Hybrid Deep Learning-Based Model for Anomaly Detection in Cloud Datacenter Networks
    Garg, Sahil
    Kaur, Kuljeet
    Kumar, Neeraj
    Kaddoum, Georges
    Zomaya, Albert Y.
    Ranjan, Rajiv
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2019, 16 (03): : 924 - 935
  • [48] Recent Advances in Machine Learning-based Anomaly Detection for Industrial Control Networks
    Wang, Qian
    Chen, He
    Li, Yonghui
    Vucetic, Branka
    2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019), 2019,
  • [49] Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks
    Ullah, Imtiaz
    Mahmoud, Qusay H.
    IEEE ACCESS, 2021, 9 (09): : 103906 - 103926
  • [50] CGAD: A novel contrastive learning-based framework for anomaly detection in attributed networks
    Wan, Yun
    Zhang, Dapeng
    Liu, Dong
    Xiao, Feng
    NEUROCOMPUTING, 2024, 609