Ultrafast Strategy to Fabricate Sulfur Cathodes for High-Performance Lithium-Sulfur Batteries

被引:2
|
作者
Liu, Kun [1 ,2 ]
Yuan, Huimin [1 ,2 ]
Wang, Xinyang [1 ,2 ]
Ye, Peiyuan [1 ,2 ]
Lu, Binda [1 ,2 ]
Zhang, Junjie [1 ,2 ]
Lu, Wang [1 ,2 ]
Jiang, Feng [1 ,2 ,3 ]
Gu, Shuai [1 ,2 ]
Chen, Jingjing [1 ,2 ]
Yan, Chunliu [1 ,2 ]
Li, Yingzhi [1 ,2 ]
Xu, Zhenghe [1 ,2 ,3 ]
Lu, Zhouguang [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen Key Lab Interfacial Sci & Engn Mat, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Key Univ Lab Highly Efficient Utilizat Solar Energ, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Adv Mat Innovat Ctr, Jiaxing Res Inst, Jiaxing 314031, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-sulfur batteries; microwave treatment; bitumen; cathode; Ni2S; CARBON;
D O I
10.1021/acsami.3c04972
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on the different dielectric properties of materialsand theselective heating property of microwaves, the ultrafast (30 s) preparationof S-NiS2@SP@Bitu as a cathode material for lithium-sulfurbatteries was achieved using bitumen, sulfur, Super P, and nickelnaphthenate as raw materials for the first time, under microwave treatment.NiS2@SP@Bitu forms Li-N, Li-O, Li-S,and Ni-S bonds with polysulfide, which contributes to promotingthe adsorption of polysulfide, reducing the precipitation and decompositionenergy barrier of Li2S, and accelerating the catalyticconversion of polysulfide, as result of inhibiting the "shuttleeffect" and improving the electrochemical performance. S-NiS2@SP@Bitu as the sulfur cathode material demonstrates outstandingrate performance (518.6 mAh g(-1) at 4C), and stablecycling performance. The lithium-sulfur battery with a sulfurloading of 4.8 mg cm(-2) shows an areal capacity of4.6 mAh cm(-2). Based on the advantages of microwaveselective and rapid heating, this method creatively realized thatthe sulfur carrier material was prepared and sulfur was fixed in itat the same time. Therefore, this method would have implications forthe preparation of sulfur cathode materials.
引用
收藏
页码:31478 / 31490
页数:13
相关论文
共 50 条
  • [31] Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries
    Fu, Yongzhu
    Su, Yu-Sheng
    Manthiram, Arumugam
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (09) : A1420 - A1424
  • [32] High-Performance Lithium-Sulfur Batteries via Molecular Complexation
    Wang, Peiyu
    Kateris, Nikolaos
    Li, Baiheng
    Zhang, Yiwen
    Luo, Jianmin
    Wang, Chuanlong
    Zhang, Yue
    Jayaraman, Amitesh S.
    Hu, Xiaofei
    Wang, Hai
    Li, Weiyang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (34) : 18865 - 18876
  • [33] Chitosan as a functional additive for high-performance lithium-sulfur batteries
    Chen, Yilei
    Liu, Naiqiang
    Shao, Hongyuan
    Wang, Weikun
    Gao, Mengyao
    Li, Chengming
    Zhang, Hao
    Wang, Anbang
    Huang, Yaqin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (29) : 15235 - 15240
  • [34] Multifunctional Separator Coatings for High-Performance Lithium-Sulfur Batteries
    Kim, Mun Sek
    Ma, Lin
    Choudhury, Snehashis
    Archer, Lynden A.
    ADVANCED MATERIALS INTERFACES, 2016, 3 (22):
  • [35] Recent progress in sulfur cathodes for application to lithium-sulfur batteries
    Li, Yongying
    Shapter, Joseph G.
    Cheng, Hui
    Xu, Guiying
    Gao, Guo
    PARTICUOLOGY, 2021, 58 : 1 - 15
  • [36] Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries
    Cheng, Xin-Bing
    Huang, Jia-Qi
    Zhang, Qiang
    Peng, Hong-Jie
    Zhao, Meng-Qiang
    Wei, Fei
    NANO ENERGY, 2014, 4 : 65 - 72
  • [37] Aqueous Supramolecular Binder for High-Performance Lithium-Sulfur Batteries
    Liu, Ruliang
    Ou, Jiaxin
    Xie, Lijun
    Liang, Yubing
    Lai, Xinyi
    Deng, Zhaoxia
    Yin, Wei
    POLYMERS, 2023, 15 (12)
  • [38] Upcycling of paper waste for high-performance lithium-sulfur batteries
    Zhou, Yucheng
    Zhang, Yunya
    Li, Xiaodong
    MATERIALS TODAY ENERGY, 2021, 19
  • [39] Polyglutamic Acid Binder for High-Performance Lithium-Sulfur Batteries
    Pang, Zhiyuan
    Zhang, Hongzhou
    Ma, Yue
    Song, Dawei
    Shi, Xixi
    Zhang, Lianqi
    Zhou, Yong
    COATINGS, 2022, 12 (10)
  • [40] A Novel Strategy for the Selection of Polysulfide Adsorbents Toward High-Performance Lithium-Sulfur Batteries
    Shang, Xiaonan
    Qin, Tianfeng
    Guo, Pengqian
    Sun, Kai
    Su, Hao
    Tao, Kun
    He, Deyan
    ADVANCED MATERIALS INTERFACES, 2019, 6 (11):