UAV Dynamic Object Tracking with Lightweight Deep Vision Reinforcement Learning

被引:2
|
作者
Nguyen, Hy [1 ]
Thudumu, Srikanth [1 ]
Du, Hung [1 ]
Mouzakis, Kon [1 ]
Vasa, Rajesh [1 ]
机构
[1] Deakin Univ, Appl Artificial Intelligence Inst A2I2, Geelong, Vic 3216, Australia
关键词
deep Q-network (DQN); deep deterministic policy gradient (DDPG); deep reinforcement learning (DRL); object tracking; object detection; unmanned aerial vehicle (UAV);
D O I
10.3390/a16050227
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several approaches have applied Deep Reinforcement Learning (DRL) to Unmanned Aerial Vehicles (UAVs) to do autonomous object tracking. These methods, however, are resource intensive and require prior knowledge of the environment, making them difficult to use in real-world applications. In this paper, we propose a Lightweight Deep Vision Reinforcement Learning (LDVRL) framework for dynamic object tracking that uses the camera as the only input source. Our framework employs several techniques such as stacks of frames, segmentation maps from the simulation, and depth images to reduce the overall computational cost. We conducted the experiment with a non-sparse Deep Q-Network (DQN) (value-based) and a Deep Deterministic Policy Gradient (DDPG) (actor-critic) to test the adaptability of our framework with different methods and identify which DRL method is the most suitable for this task. In the end, a DQN is chosen for several reasons. Firstly, a DQN has fewer networks than a DDPG, hence reducing the computational resources on physical UAVs. Secondly, it is surprising that although a DQN is smaller in model size than a DDPG, it still performs better in this specific task. Finally, a DQN is very practical for this task due to the ability to operate in continuous state space. Using a high-fidelity simulation environment, our proposed approach is verified to be effective.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Autonomous Obstacle Avoidance and Target Tracking of UAV Based on Deep Reinforcement Learning
    Xu, Guoqiang
    Jiang, Weilai
    Wang, Zhaolei
    Wang, Yaonan
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 104 (04)
  • [32] UAV-Enabled Mobile Radiation Source Tracking with Deep Reinforcement Learning
    Gu, Jiangchun
    Wang, Haichao
    Ding, Guoru
    Xu, Yitao
    Jiao, Yutao
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 672 - 678
  • [33] Dynamic deployment of multi-UAV base stations with deep reinforcement learning
    Wu, Guanhan
    Jia, Weimin
    Zhao, Jianwei
    ELECTRONICS LETTERS, 2021, 57 (15) : 600 - 602
  • [34] Deep Reinforcement Learning for Dynamic Band Switch in Cellular-Connected UAV
    Fontanesi, Gianluca
    Zhu, Anding
    Ahmadi, Hamed
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [35] A fast, lightweight deep learning vision pipeline for autonomous UAV landing support with added robustness
    Pieczynski, Dominik
    Ptak, Bartosz
    Kraft, Marek
    Piechocki, Mateusz
    Aszkowski, Przemyslaw
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [36] Vision-based Deep Learning algorithm for Underwater Object Detection and Tracking
    Alla, Durga Nooka Venkatesh
    Jyothi, V. Bala Naga
    Venkataraman, H.
    Ramadass, G. A.
    OCEANS 2022, 2022,
  • [37] Vision-Based UAV Detection and Tracking Using Deep Learning and Kalman Filter
    Alshaer, Nancy
    Abdelfatah, Reham
    Ismail, Tawfik
    Mahmoud, Haitham
    Computational Intelligence, 2025, 41 (01)
  • [38] UAV Maneuvering Target Tracking in Uncertain Environments Based on Deep Reinforcement Learning and Meta-Learning
    Li, Bo
    Gan, Zhigang
    Chen, Daqing
    Sergey Aleksandrovich, Dyachenko
    REMOTE SENSING, 2020, 12 (22) : 1 - 20
  • [39] Joint Communication and Action Learning in Multi-Target Tracking of UAV Swarms with Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Zhang, Qingjie
    DRONES, 2022, 6 (11)
  • [40] A survey on security of UAV and deep reinforcement learning
    Sarikaya, Burcu Sonmez
    Bahtiyar, Serif
    AD HOC NETWORKS, 2024, 164