New stability result of a partially dissipative viscoelastic Timoshenko system with a wide class of relaxation function

被引:0
|
作者
Al-Omari, Shadi [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Preparatory Year Program, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
关键词
Timoshenko system; viscoelasticity; general decay; convex functions; equal wave speeds; TRANSVERSE VIBRATIONS; OPTIMAL DECAY; ENERGY DECAY; EXISTENCE;
D O I
10.1080/00036811.2021.2021185
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following partially dissipative viscoelastic Timoshenko system {rho(1)phi(tt) = kappa(phi(x) + psi)(x) +kappa(t)(integral 0)g(t-s)(phi(x)+psi)(x) ds = 0 in (0, L) x R+, rho(2)psi(tt) - b psi(xx) + kappa(phi x+psi) - kappa integral(t)(0) g(t-s)(phi(x)+psi) ds =0 in (0, L) x R+, with damping mechanism acting only on the shear force, and with Dirichlet boundary conditions. We consider a very general relaxation function g'(t) <= -xi(t)H(g(t)), for all >= 0. Under appropriate conditions on. and H, we establish a general stability result. The result is obtained under the assumption of equal speed of wave propagation. This work extends and generalizes many results in literature such as Alves et al. [On modeling and uniform stability of a partially dissipative viscoelastic Timoshenko system. SIAM J Math Anal. 2019;51(6):4520-4543].
引用
收藏
页码:2123 / 2140
页数:18
相关论文
共 50 条
  • [11] A new stability result for a thermoelastic Bresse system with viscoelastic damping
    Soh Edwin Mukiawa
    Cyril Dennis Enyi
    Tijani Abdulaziz Apalara
    Journal of Inequalities and Applications, 2021
  • [12] A new stability result for a flexible satellite system with viscoelastic damping
    Hamdi, Soumia
    Berkani, Amirouche
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 10070 - 10098
  • [13] A new stability result for a thermoelastic Bresse system with viscoelastic damping
    Mukiawa, Soh Edwin
    Enyi, Cyril Dennis
    Apalara, Tijani Abdulaziz
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [14] Stability result of the Timoshenko system with delay and boundary feedback
    Said-Houari, Belkacem
    Soufyane, Abdelaziz
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2012, 29 (03) : 383 - 398
  • [15] A STABILITY RESULT IN A MEMORY-TYPE TIMOSHENKO SYSTEM
    Messaoudi, Salim A.
    Mustafa, Muhammad I.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2009, 18 (3-4): : 457 - 468
  • [16] A stability result in a weakly damped nonlinear Timoshenko system
    Messaoudi, Salim A.
    Mustafa, Muhammad I.
    MODELLING OF ENGINEERING AND TECHNOLOGICAL PROBLEMS, 2009, 1146 : 123 - 135
  • [17] Stability of a viscoelastic Timoshenko system with non-monotonic kernel
    Zhang, Hai-E
    Xu, Gen-Qi
    Chen, Hao
    APPLICABLE ANALYSIS, 2023, 102 (10) : 2692 - 2723
  • [18] A GENERAL STABILITY RESULT IN A MEMORY-TYPE TIMOSHENKO SYSTEM
    Messaoudi, Salim A.
    Mustafa, Muhammad I.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) : 957 - 972
  • [19] A stability result of a Timoshenko system with a delay term in the internal feedback
    Said-Houari, Belkacem
    Laskri, Yamina
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2857 - 2869
  • [20] Lack of exponential stability to Timoshenko system with viscoelastic Kelvin–Voigt type
    Andréia Malacarne
    Jaime Edilberto Muñoz Rivera
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67