Triptolide attenuates cardiac remodeling by inhibiting pyroptosis and EndMT via modulating USP14/Keap1/Nrf2 pathway

被引:2
|
作者
Ba, Lina [1 ,2 ]
Mingyao, E. [2 ,3 ]
Wang, Ruixuan [2 ]
Wu, Nan [2 ]
Wang, Rui [2 ]
Liu, Renling [2 ]
Feng, Xiang [2 ]
Qi, Hanping [2 ]
Sun, Hongli [2 ]
Guofen, Qiao [1 ]
机构
[1] Harbin Med Univ, Dept Pharmacol, State Prov Key Labs Biomed Pharmaceut China, Dept Pharmacol,Minist Educ,Coll Pharm, Harbin 150081, Peoples R China
[2] Harbin Med Univ Daqing, Dept Pharmacol, Daqing 163319, Heilongjiang, Peoples R China
[3] Changchun Univ Chinese Med, Key Lab Biomacromol Chinese Med, Changchun 130117, Peoples R China
关键词
Triptolide; Cardiac remodeling; Cardiac hypertrophy; Cardiac fibrosis; Pyroptosis; EndMT; TO-MESENCHYMAL TRANSITION; HYPERTROPHY; ACTIVATION; FIBROSIS;
D O I
10.1016/j.heliyon.2024.e24010
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Cardiac remodeling is a common pathological feature in many cardiac diseases, characterized by cardiac hypertrophy and fibrosis. Triptolide (TP) is a natural compound derived from Tripterygium wilfordii Hook F. However, the related mechanism of it in cardiac remodeling has not been fully understood. Methods and results: Transverse aortic constriction (TAC)-induced cardiac hypertrophic mouse model and angiotensin II (Ang II) -induced cardiomyocytes hypertrophic model were performed. Firstly, the results indicate that TP can improve cardiac function, decreased cardiomyocyte surface area and fibrosis area, as well as lowered the protein expressions of brain natriuretic peptide (BNP), 8 -major histocompatibility complex (8-MHC), type I and III collagen (Col I and III). Secondly, TP suppressed cardiac pyroptosis, and decreased the levels of Interleukin-18 (IL -18), Interleukin-18 (IL -18) by Enzyme -linked immunosorbent assay (ELISA), and pyroptosisassociated proteins. Furthermore, TP enhanced the expressions of Nuclear factor erythroid 2related factor 2 (Nrf2) and Heme oxygenase 1 (HO -1). Interestingly, when Nrf2 was silenced by siRNA, TP lost its properties of reducing pyroptosis and cardiac hypertrophy. In addition, in the Transforming Growth Factor 81 (TGF-81)-induced primary human coronary artery endothelial cells (HCAEC) model, TP was found to inhibit the process of endothelial-to-mesenchymal transition (EndMT), characterized by the loss of endothelial -specific markers and the gain of mesenchymal markers. This was accompanied by a suppression of Slug, Snail, and Twist expression. Meanwhile, the inhibitory effect of TP on EndMT was weakened when Nrf2 was silenced by siRNA. Lastly, potential targets of TP were identified through network pharmacology analysis, and found that Ubiquitin-Specific Protease 14 (USP14) was one of them. Simultaneously, the data indicated that decrease the upregulation of USP14 and Kelch-like ECH-Associated Protein 1 (Keap1) caused by cardiac remodeling. However, Keap1 was decreased and Nrf2 was increased when USP14 was silenced. Furthermore, CoIP analysis showed that USP14 directly interacts with Keap1. Conclusion: TP can observably reduce pyroptosis and EndMT by targeting the USP14/Keap1/Nrf2 pathway, thereby significantly attenuating cardiac remodeling.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Effect of arsenic and copper in kidney of mice: Crosstalk between Nrf2/ Keap1 pathway in apoptosis and pyroptosis
    Li, Yuanxu
    Zhong, Gaolong
    He, Ting
    Quan, Jinwen
    Liu, Siying
    Liu, Zhonghua
    Tang, Zhaoxin
    Yu, Wenlan
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 266
  • [22] The Role of the Keap1/Nrf2 Pathway in the Cellular Response to Methylmercury
    Kumagai, Yoshito
    Kanda, Hironori
    Shinkai, Yasuhiro
    Toyama, Takashi
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2013, 2013
  • [23] Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers
    Tossetta, Giovanni
    Marzioni, Daniela
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2023, 941
  • [24] The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism
    Song, Moon-Young
    Lee, Da-Young
    Chun, Kyung-Soo
    Kim, Eun-Hee
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)
  • [25] Loss-of-function mutations in KEAP1 drive lung cancer progression via KEAP1/NRF2 pathway activation
    Gong, Meiling
    Li, Yan
    Ye, Xiaoping
    Zhang, Linlin
    Wang, Zhifang
    Xu, Xiaowen
    Shen, Yejing
    Zheng, Cuixia
    CELL COMMUNICATION AND SIGNALING, 2020, 18 (01)
  • [26] The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome
    Zhang, Zhiguo
    Zhou, Shanshan
    Jiang, Xin
    Wang, Yue-Hui
    Li, Fengsheng
    Wang, Yong-Gang
    Zheng, Yang
    Cai, Lu
    REVIEWS IN ENDOCRINE & METABOLIC DISORDERS, 2015, 16 (01): : 35 - 45
  • [27] The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications
    Shahcheraghi, Seyed Hossein
    Salemi, Fateme
    Alam, Waqas
    Ashworth, Henry
    Saso, Luciano
    Khan, Haroon
    Lotfi, Marzieh
    MEDICAL ONCOLOGY, 2022, 39 (05)
  • [28] The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome
    Zhiguo Zhang
    Shanshan Zhou
    Xin Jiang
    Yue-Hui Wang
    Fengsheng Li
    Yong-Gang Wang
    Yang Zheng
    Lu Cai
    Reviews in Endocrine and Metabolic Disorders, 2015, 16 : 35 - 45
  • [29] NRF2 pathway activation by KEAP1 inhibition attenuates the manifestation of aging phenotypes in salivary glands
    Wati, Sisca Meida
    Matsumaru, Daisuke
    Motohashi, Hozumi
    REDOX BIOLOGY, 2020, 36
  • [30] The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications
    Seyed Hossein Shahcheraghi
    Fateme Salemi
    Waqas Alam
    Henry Ashworth
    Luciano Saso
    Haroon Khan
    Marzieh Lotfi
    Medical Oncology, 39