Spatial joint models through Bayesian structured piecewise additive joint modelling for longitudinal and time-to-event data
被引:1
|
作者:
Rappl, Anja
论文数: 0引用数: 0
h-index: 0
机构:
Friedrich Alexander Univ Erlangen Nurnberg, Inst Med Informat Biometry & Epidemiol, Erlangen, GermanyFriedrich Alexander Univ Erlangen Nurnberg, Inst Med Informat Biometry & Epidemiol, Erlangen, Germany
Rappl, Anja
[1
]
Kneib, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Chair Stat, Gottingen, GermanyFriedrich Alexander Univ Erlangen Nurnberg, Inst Med Informat Biometry & Epidemiol, Erlangen, Germany
Kneib, Thomas
[2
]
Lang, Stefan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Innsbruck, Dept Stat, Innsbruck, AustriaFriedrich Alexander Univ Erlangen Nurnberg, Inst Med Informat Biometry & Epidemiol, Erlangen, Germany
Lang, Stefan
[3
]
Bergherr, Elisabeth
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Chair Spatial Data Sci & Stat Learning, Gottingen, GermanyFriedrich Alexander Univ Erlangen Nurnberg, Inst Med Informat Biometry & Epidemiol, Erlangen, Germany
Bergherr, Elisabeth
[4
]
机构:
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Med Informat Biometry & Epidemiol, Erlangen, Germany
[2] Georg August Univ Gottingen, Chair Stat, Gottingen, Germany
[3] Univ Innsbruck, Dept Stat, Innsbruck, Austria
[4] Georg August Univ Gottingen, Chair Spatial Data Sci & Stat Learning, Gottingen, Germany
Joint models for longitudinal and time-to-event data simultaneously model longitudinal and time-to-event information to avoid bias by combining usually a linear mixed model with a proportional hazards model. This model class has seen many developments in recent years, yet joint models including a spatial predictor are still rare and the traditional proportional hazards formulation of the time-to-event part of the model is accompanied by computational challenges. We propose a joint model with a piecewise exponential formulation of the hazard using the counting process representation of a hazard and structured additive predictors able to estimate (non-)linear, spatial and random effects. Its capabilities are assessed in a simulation study comparing our approach to an established one and highlighted by an example on physical functioning after cardiovascular events from the German Ageing Survey. The Structured Piecewise Additive Joint Model yielded good estimation performance, also and especially in spatial effects, while being double as fast as the chosen benchmark approach and performing stable in an imbalanced data setting with few events.
机构:
An Giang Univ, Sch Math, 18 Ung Van Khiem St, Long Xuyen, An Giang, VietnamAn Giang Univ, Sch Math, 18 Ung Van Khiem St, Long Xuyen, An Giang, Vietnam
Pham Thi Thu Huong
论文数: 引用数:
h-index:
机构:
Nur, Darfiana
Hoa Pham
论文数: 0引用数: 0
h-index: 0
机构:
An Giang Univ, Sch Math, 18 Ung Van Khiem St, Long Xuyen, An Giang, VietnamAn Giang Univ, Sch Math, 18 Ung Van Khiem St, Long Xuyen, An Giang, Vietnam
Hoa Pham
Branford, Alan
论文数: 0引用数: 0
h-index: 0
机构:
Flinders Univ S Australia, Sch Comp Sci Engn & Math, Adelaide, SA, AustraliaAn Giang Univ, Sch Math, 18 Ung Van Khiem St, Long Xuyen, An Giang, Vietnam