AUTOMATIC TOOL FOR PULMONARY ARTERY HEMODYNAMIC ASSESSMENT FROM 4D FLOW MRI

被引:1
|
作者
Bobeda, Javier [1 ]
Erostarbe, Haizea [1 ]
Stephens, Maialen [1 ,2 ,3 ]
Gaitan, Angel [4 ,5 ]
Kumar, Rahul [6 ]
Nuche, Jorge [4 ,5 ]
Marco, Irene [4 ,5 ]
Delgado, Juan [4 ,5 ]
Ruiz-Cabello, Jesus [6 ,7 ]
Lopez-Linares, Karen [1 ,3 ]
机构
[1] Basque Res & Technol Alliance, Vicomtech, Mendaro, Spain
[2] Univ Pompeu Fabra, BCN Medtech, Barcelona, Spain
[3] Biodonostia Hlth Res Inst, San Sebastian, Spain
[4] Hosp 12 Octubre, Serv Cardiol, Madrid, Spain
[5] CIBERCV, Madrid, Spain
[6] Basque Res & Technol Alliance, CIC biomaGUNE, Mendaro, Spain
[7] Univ Complutense Madrid, Dept Quim Ciencias Farmaceut, Basque Fdn Sci, CIBERES,Ikerbasque, Madrid, Spain
关键词
deep learning; computational fluid dynamics; 4D flow MRI; automatic blood flow biomarkers;
D O I
10.1109/ISBI53787.2023.10230426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, the extraction of blood flow biomarkers to characterize diseases is a time consuming process as it requires the manual segmentation of vascular structures and complex computational fluid dynamics (CFD) simulations. Here, we propose a tool to automatically segment the pulmonary artery and to compute biomarkers from 4D flow magnetic resonance images. In the context of Pulmonary Hypertension (PH), we show that biomarkers such as peak velocity, flow rate, helicity and vorticity provide discriminative power between patient groups and are derived in a faster and simpler way than traditional methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Congenital Heart Disease Assessment With 4D Flow MRI
    Vasanawala, Shreyas S.
    Hanneman, Kate
    Alley, Marcus T.
    Hsiao, Albert
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 42 (04) : 870 - 886
  • [22] Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI
    Lantz, Jonas
    Gupta, Vikas
    Henriksson, Lilian
    Karlsson, Matts
    Persson, Anders
    Carlhall, Carl-Johan
    Ebbers, Tino
    RADIOLOGY, 2018, 289 (01) : 51 - 58
  • [23] Robust Cardiac Function Assessment in 4D PC-MRI Data of the Aorta and Pulmonary Artery
    Koehler, Benjamin
    Preim, Uta
    Grothoff, Matthias
    Gutberlet, Matthias
    Fischbach, Katharina
    Preim, Bernhard
    COMPUTER GRAPHICS FORUM, 2016, 35 (01) : 32 - 43
  • [24] 4D flow MRI analysis improved perioperative management in a patient with severe pulmonary regurgitation and pulmonary artery aneurysm
    Akiyama, Koichi
    Obata, Yurie
    Hirase, Yu
    Sawa, Teiji
    ANESTHESIA AND ANALGESIA, 2021, 132 (5S_SUPPL): : 171 - 171
  • [25] Automatic heart localization from a 4D MRI dataset
    Sorgel, W
    Vaerman, V
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 333 - 344
  • [26] Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage
    Hojin Ha
    Jonas Lantz
    Henrik Haraldsson
    Belen Casas
    Magnus Ziegler
    Matts Karlsson
    David Saloner
    Petter Dyverfeldt
    Tino Ebbers
    Scientific Reports, 6
  • [27] Early Hemodynamic Response Assessment of Stereotactic Radiosurgery for a Cerebral Arteriovenous Malformation Using 4D Flow MRI
    Li, C. Q.
    Hsiao, A.
    Hattangadi-Gluth, J.
    Handwerker, J.
    Farid, N.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (04) : 678 - 681
  • [28] Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage
    Ha, Hojin
    Lantz, Jonas
    Haraldsson, Henrik
    Casas, Belen
    Ziegler, Magnus
    Karlsson, Matts
    Saloner, David
    Dyverfeldt, Petter
    Ebbers, Tino
    SCIENTIFIC REPORTS, 2016, 6
  • [29] Pressure Mapping and Hemodynamic Assessment of Intracranial Dural Sinuses and Dural Arteriovenous Fistulas with 4D Flow MRI
    Rivera-Rivera, L. A.
    Johnson, K. M.
    Turski, P. A.
    Wieben, O.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (03) : 485 - 487
  • [30] Editorial for "Evaluation of Pulmonary Hypertension Using 4D Flow MRI"
    Zhou, Yuxiang
    Panda, Anshuman
    Jokerst, Clinton E.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 56 (01) : 246 - 247