AUTOMATIC TOOL FOR PULMONARY ARTERY HEMODYNAMIC ASSESSMENT FROM 4D FLOW MRI

被引:1
|
作者
Bobeda, Javier [1 ]
Erostarbe, Haizea [1 ]
Stephens, Maialen [1 ,2 ,3 ]
Gaitan, Angel [4 ,5 ]
Kumar, Rahul [6 ]
Nuche, Jorge [4 ,5 ]
Marco, Irene [4 ,5 ]
Delgado, Juan [4 ,5 ]
Ruiz-Cabello, Jesus [6 ,7 ]
Lopez-Linares, Karen [1 ,3 ]
机构
[1] Basque Res & Technol Alliance, Vicomtech, Mendaro, Spain
[2] Univ Pompeu Fabra, BCN Medtech, Barcelona, Spain
[3] Biodonostia Hlth Res Inst, San Sebastian, Spain
[4] Hosp 12 Octubre, Serv Cardiol, Madrid, Spain
[5] CIBERCV, Madrid, Spain
[6] Basque Res & Technol Alliance, CIC biomaGUNE, Mendaro, Spain
[7] Univ Complutense Madrid, Dept Quim Ciencias Farmaceut, Basque Fdn Sci, CIBERES,Ikerbasque, Madrid, Spain
关键词
deep learning; computational fluid dynamics; 4D flow MRI; automatic blood flow biomarkers;
D O I
10.1109/ISBI53787.2023.10230426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, the extraction of blood flow biomarkers to characterize diseases is a time consuming process as it requires the manual segmentation of vascular structures and complex computational fluid dynamics (CFD) simulations. Here, we propose a tool to automatically segment the pulmonary artery and to compute biomarkers from 4D flow magnetic resonance images. In the context of Pulmonary Hypertension (PH), we show that biomarkers such as peak velocity, flow rate, helicity and vorticity provide discriminative power between patient groups and are derived in a faster and simpler way than traditional methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Assessment of mean pulmonary artery pressure with 4D flow MRI
    Crowe, L.
    Guglielmi, G.
    Hachulla, A. -L.
    Noble, S.
    Soccal, P. M.
    Beghetti, M.
    Lador, F.
    Vallee, J. -P.
    CHEST, 2017, 151 (05) : 117A - 117A
  • [2] Automated hemodynamic assessment for cranial 4D flow MRI
    Roberts, Grant S.
    Hoffman, Carson A.
    Rivera-Rivera, Leonardo A.
    Berman, Sara E.
    Eisenmenger, Laura B.
    Wieben, Oliver
    MAGNETIC RESONANCE IMAGING, 2023, 97 : 46 - 55
  • [3] Assessment of blood flow patterns in the pulmonary artery using 4D flow
    Pablo Bächler
    Natalia Pinochet
    Cristián Tejos
    Crelier Gerard
    Pablo Irrarázabal
    Sergio Uribe
    Journal of Cardiovascular Magnetic Resonance, 13 (Suppl 1)
  • [4] 4D flow MRI-Automatic assessment of blood flow in cerebral arteries
    Dunas, Tora
    Wahlin, Anders
    Zarrinkoob, Laleh
    Malm, Jan
    Eklund, Anders
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (01):
  • [5] Impact of Respiratory Gating on Hemodynamic Parameters from 4D Flow MRI
    Denecken, Esteban
    Sotelo, Julio
    Arrieta, Cristobal
    Andia, Marcelo E.
    Uribe, Sergio
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [6] 4D flow MRI hemodynamic biomarkers for cerebrovascular diseases
    Wahlin, Anders
    Eklund, Anders
    Malm, Jan
    JOURNAL OF INTERNAL MEDICINE, 2022, 291 (02) : 115 - 127
  • [7] Creating Hemodynamic Atlases of Cardiac 4D Flow MRI
    Cibis, Merih
    Bustamante, Mariana
    Eriksson, Jonatan
    Carlhall, Carl-Johan
    Ebbers, Tino
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (05) : 1389 - 1399
  • [8] Feasibility and reproducibility study in swine of 4D flow MRI to assess pulmonary vessels hemodynamic
    Faragli, A. Alessandro
    Lo Muzio, F. P.
    Huellebrand, M.
    Tanacli, R.
    Hennemuth, A.
    Alogna, A.
    Kelle, S.
    EUROPEAN JOURNAL OF HEART FAILURE, 2024, 26 : 641 - 641
  • [9] The value of 4D flow MRI in cardiac assessment
    Nicholls, Mark
    EUROPEAN HEART JOURNAL, 2022, 43 (10) : 930 - 932
  • [10] 4D Flow MRI hemodynamic benchmarking of surgical bioprosthetic valves
    Sturla, Francesco
    Piatti, Filippo
    Jaworek, Michal
    Lucherini, Federico
    Pluchinotta, Francesca R.
    Siryk, Sergii, V
    Giese, Daniel
    Vismara, Riccardo
    Tasca, Giordano
    Menicanti, Lorenzo
    Redaelli, Alberto
    Lombardi, Massimo
    MAGNETIC RESONANCE IMAGING, 2020, 68 : 18 - 29