Physically informed data-driven modeling of active nematics

被引:17
|
作者
Golden, Matthew [1 ]
Grigoriev, Roman O. [1 ]
Nambisan, Jyothishraj [1 ,2 ,3 ]
Fernandez-Nieves, Alberto [2 ,3 ,4 ]
机构
[1] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[2] Univ Barcelona, Dept Condensed Matter Phys, Barcelona 08028, Spain
[3] Univ Barcelona, Inst Complex Syst UBICS, Barcelona 08028, Spain
[4] ICREA Inst Catalanade Recerca & Estudis Avancats, Barcelona 08010, Spain
关键词
EQUATIONS;
D O I
10.1126/sciadv.abq6120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A continuum description is essential for understanding a variety of collective phenomena in active matter. However, building quantitative continuum models of active matter from first principles can be extremely challenging due to both the gaps in our knowledge and the complicated structure of nonlinear interactions. Here, we use a physically informed data-driven approach to construct a complete mathematical model of an active nematic from experimental data describing kinesin-driven microtubule bundles confined to an oil-water interface. We find that the structure of the model is similar to the Leslie-Ericksen and Beris-Edwards models, but there are appreciable and important differences. Rather unexpectedly, elastic effects are found to play no role in the experiments considered, with the dynamics controlled entirely by the balance between active stresses and friction stresses.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Physically-based and Data-driven Fluid Simulation Research
    Xiao X.-Y.
    Yang X.-B.
    Yang, Xu-Bo (yangxubo@sjtu.edu.cn), 1600, Chinese Academy of Sciences (31): : 3251 - 3265
  • [22] TOWARDS PHYSICALLY-CONSISTENT, DATA-DRIVEN MODELS OF CONVECTION
    Beucler, Tom
    Pritchard, Michael
    Gentine, Pierre
    Rasp, Stephan
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3987 - 3990
  • [23] Data-Driven Uncertainty Modeling for Robust Feedback Active Noise Control in Headphones
    Hilgemann, Florian
    Chatzimoustafa, Egke
    Jax, Peter
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2024, 72 (12): : 873 - 883
  • [24] Data-driven modeling for electro-active liquid crystal polymer networks
    Amiri, Anahita
    Shakib, Mohammad Fahim
    Arteaga, Ines Lopez
    van de Wouw, Nathan
    DISCOVER APPLIED SCIENCES, 2025, 7 (01)
  • [25] Data-driven modeling of acoustical instruments
    Schoner, B
    Cooper, C
    Douglas, C
    Gershenfed, N
    JOURNAL OF NEW MUSIC RESEARCH, 1999, 28 (02) : 81 - 89
  • [26] Data-Driven Synthetic Modeling of Trees
    Zhang, Xiaopeng
    Li, Hongjun
    Dai, Mingrui
    Ma, Wei
    Quan, Long
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (09) : 1214 - 1226
  • [27] Data-Driven multiscale modeling in mechanics
    Karapiperis, K.
    Stainier, L.
    Ortiz, M.
    Andrade, J. E.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 147
  • [28] Data-Driven Modeling of Chromatographic Processes
    不详
    CHEMICAL ENGINEERING PROGRESS, 2024, 120 (12) : 10 - 10
  • [29] On the Data-Driven Modeling of Reactive Extrusion
    Ibanez, Ruben
    Casteran, Fanny
    Argerich, Clara
    Ghnatios, Chady
    Hascoet, Nicolas
    Ammar, Amine
    Cassagnau, Philippe
    Chinesta, Francisco
    FLUIDS, 2020, 5 (02)
  • [30] Data-driven modeling for scoliosis prediction
    Deng, Liming
    Li, Han-Xiong
    Hu, Yong
    Cheung, Jason P. Y.
    Jin, Richu
    Luk, Keith D. K.
    Cheung, Prudence W. H.
    2016 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2016,