A Multi-View Clustering based Dynamic Partitioning Method for Distribution Network

被引:1
|
作者
Cui, Li [1 ]
Bingsen, Xia [1 ]
Zhenglong, Leng [1 ]
机构
[1] State Grid Fujian Econ Res Inst, Fuzhou, Peoples R China
关键词
distribution network; multi-view clustering; k-means; area partitioning;
D O I
10.1109/ICPEA56918.2023.10093151
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aiming at solving the division problem of the area-centralized layout in the power distribution network, a dynamic partitioning method of distribution network area based on a multi-view clustering algorithm is proposed. Firstly, a mathematical model is established to calculate the optimal number of clusters considering communication quality and communication cost. Secondly, the Laplacian matrix of distribution network structure and other perspectives, such as the geographic location and the administrative area of distribution network stations are introduced to the distribution network area division by multi-view clustering. Thirdly, one of the stations is selected as the edge computing center to ensure efficient edge computing by combining the clustering center and the actual situation. Finally, the proposed method realizes the effective partitioning of the distribution network and the automatic area adjustment when the structure of distribution network changes. Based on the network structure calculation of 145 stations in a local distribution network, the experimental simulation results verify that the proposed partitioning method is practical and feasible.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 50 条
  • [31] Multi-view clustering based on view-attention driven
    Zhifeng Ma
    Junyang Yu
    Longge Wang
    Huazhu Chen
    Yuxi Zhao
    Xin He
    Yingqi Wang
    Yalin Song
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 2621 - 2631
  • [32] Multi-view document clustering via ensemble method
    Syed Fawad Hussain
    Muhammad Mushtaq
    Zahid Halim
    Journal of Intelligent Information Systems, 2014, 43 : 81 - 99
  • [33] Multi-view document clustering via ensemble method
    Hussain, Syed Fawad
    Mushtaq, Muhammad
    Halim, Zahid
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2014, 43 (01) : 81 - 99
  • [34] Multi-view Clustering Ensembles
    Xie, Xijiong
    Sun, Shiliang
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 51 - 56
  • [35] Multi-View Multiple Clustering
    Yao, Shixin
    Yu, Guoxian
    Wang, Jun
    Domeniconi, Carlotta
    Zhang, Xiangliang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4121 - 4127
  • [36] Multi-view Clustering: A Survey
    Yan Yang
    Hao Wang
    Big Data Mining and Analytics, 2018, 1 (02) : 83 - 107
  • [37] Multi-view Clustering: A Survey
    Yang, Yan
    Wang, Hao
    BIG DATA MINING AND ANALYTICS, 2018, 1 (02) : 83 - 107
  • [38] Multi-View Subspace Clustering
    Gao, Hongchang
    Nie, Feiping
    Li, Xuelong
    Huang, Heng
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4238 - 4246
  • [39] Collaborative Multi-View Clustering
    Ghassany, Mohamad
    Grozavu, Nistor
    Bennani, Younes
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [40] Partial Multi-View Clustering
    Li, Shao-Yuan
    Jiang, Yuan
    Zhou, Zhi-Hua
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1968 - 1974