SCALAR CURVATURE VOLUME COMPARISON THEOREMS FOR ALMOST RIGID SPHERES

被引:0
|
作者
Zhang, Yiyue [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
METRIC-MEASURE-SPACES; RICCI CURVATURE; MANIFOLDS; GEOMETRY;
D O I
10.1090/proc/16124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bray's football theorem gives a sharp volume upper bound for a three dimensional manifold with scalar curvature no less than n(n-1) and Ricci curvature at least epsilon 0g over bar . This paper extends Bray's football theorem in higher dimensions, assuming the manifold is axisymmetric or the Ricci curvature has a uniform upper bound. Effectively, we show that if the Ricci curvature of an n-manifold is close to that of a round n-sphere, a lower bound on scalar curvature gives an upper bound on the total volume.
引用
收藏
页码:3577 / 3586
页数:10
相关论文
共 50 条