The axiom of choice in metric measure spaces and maximal d -separated sets

被引:0
|
作者
Dybowski, Michal [1 ]
Gorka, Przemyslaw [1 ]
机构
[1] Warsaw Univ Technol, Dept Math & Informat Sci, Pl Politech 1, PL-00661 Warsaw, Poland
关键词
Axiom of choice; Dependent choice; Countable choice; delta-separated sets; Borel measure; Doubling measure; Doubling metric space;
D O I
10.1007/s00153-023-00868-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Axiom of Countable Choice is necessary and sufficient to prove that the existence of a Borel measure on a pseudometric space such that the measure of open balls is positive and finite implies separability of the space. In this way a negative answer to an open problem formulated in G & oacute;rka (Am Math Mon 128:84-86, 2020) is given. Moreover, we study existence of maximal delta -separated sets in metric and pseudometric spaces from the point of view the Axiom of Choice and its weaker forms.
引用
收藏
页码:735 / 749
页数:15
相关论文
共 50 条
  • [22] Countable contraction mappings in metric spaces: invariant sets and measure
    Fernanda Barrozo, Maria
    Molter, Ursula
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (04): : 593 - 602
  • [23] Indecomposable sets of finite perimeter in doubling metric measure spaces
    Bonicatto, Paolo
    Pasqualetto, Enrico
    Rajala, Tapio
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [24] Indecomposable sets of finite perimeter in doubling metric measure spaces
    Paolo Bonicatto
    Enrico Pasqualetto
    Tapio Rajala
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [25] ON A CLASS OF HAUSDORFF MEASURE OF CARTESIAN PRODUCT SETS IN METRIC SPACES
    Attia, Najmeddine
    Jebali, Hajer
    Guedri, Rihab
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 62 (02) : 601 - 623
  • [26] REMARK ON AXIOM OF CHOICE FOR FINITE SETS
    VISNEVSK.K
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1967, 15 (06): : 373 - &
  • [27] On κ-hereditary sets and consequences of the axiom of choice
    Diener, KH
    MATHEMATICAL LOGIC QUARTERLY, 2000, 46 (04) : 563 - 568
  • [28] Bases, spanning sets, and the axiom of choice
    Howard, Paul
    MATHEMATICAL LOGIC QUARTERLY, 2007, 53 (03) : 247 - 254
  • [29] Closed products of sets and the axiom of choice
    de Jesus, J. P. C.
    da Silva, S. G.
    ACTA MATHEMATICA HUNGARICA, 2011, 133 (1-2) : 128 - 132
  • [30] Closed products of sets and the axiom of choice
    Joao Paulo C. de Jesus
    Samuel G. da Silva
    Acta Mathematica Hungarica, 2011, 133 : 128 - 132