THE BEST CONSTANT FOR L∞-TYPE GAGLIARDO-NIRENBERG INEQUALITIES

被引:1
|
作者
Liu, Jian-guo [1 ]
Wang, Jinhuan [2 ,3 ]
机构
[1] Duke Univ, Dept Phys, Dept Math, Durham, NC 27708 USA
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
[3] Liaoning Univ, Sch Math & Stat, Shenyang 110036, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Free boundary problem; best constant; Lane-Emden equation; Thomas-Fermi type equation; closed form solution; NONNEGATIVE SOLUTIONS; SEMILINEAR EQUATIONS; SOBOLEV; UNIQUENESS; EXISTENCE;
D O I
10.1090/qam/1645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive the best constant for the following L-infinity-typ e Gagliardo-Nirenberg interpolation inequality parallel to u parallel to(L infinity) <= C-q,C-infinity,C-p parallel to u parallel to(1-theta)(Lq+1) parallel to del u parallel to(theta)(Lp), theta = pd/dp + (p - d)(q + 1), where parameters q and p satisfy the conditions p > d >= 1, q >= 0. The best constant C-q,C-infinity,C-p is given by C-q,C-infinity,C-p = theta(-theta/p) (1 - theta)(theta/p) M-c(-theta/d) , M-c := integral(Rd) u(c,infinity)(q+1)dx, where u(c,infinity) is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when u = Au-c,Au-infinity(lambda(x - x(0))) for any real numbers A, lambda > 0 and x(0) is an element of R-d. In fact, the generalized Lane-Emden equation in R-d contains a delta function as a source and it is a Thomas-Fermi type equation. For q = 0 or d = 1, u(c,infinity) have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that u(c,m) -> u(c,infinity) and C-q,C-m,C-p -> C-q,C-infinity,C-p as m -> +infinity for d = 1, where u(c,m) and C-q,C-m,C-p are the function achieving equality and the best constant of L-m-type Gagliardo-Nirenberg interpolation inequality, respectively.
引用
收藏
页码:305 / 338
页数:34
相关论文
共 50 条
  • [31] ONE MULTIPLICATIVE INEQUALITY OF TYPE OF GAGLIARDO-NIRENBERG
    MOGILEVSKII, IS
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1975, (02): : 159 - 161
  • [32] Sobolev, Hardy, Gagliardo-Nirenberg, and Caffarelli-Kohn-Nirenberg-type inequalities for some fractional derivatives
    Kassymov, Aidyn
    Ruzhansky, Michael
    Tokmagambetov, Niyaz
    Torebek, Berikbol T.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
  • [33] On Gagliardo–Nirenberg Type Inequalities
    V. I. Kolyada
    F. J. Pérez Lázaro
    [J]. Journal of Fourier Analysis and Applications, 2014, 20 : 577 - 607
  • [34] Sharp Gagliardo-Nirenberg Inequalities via p-Laplacian Type Equations
    Agueh, Martial
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (4-5): : 457 - 472
  • [35] ONE MULTIPLICATIVE INEQUALITY OF TYPE OF GAGLIARDO-NIRENBERG
    MOGILEVSKII, IS
    [J]. VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1975, (07): : 159 - 161
  • [36] Sharp constant of an improved Gagliardo-Nirenberg inequality and its application
    Chen, Jianqing
    Guo, Boling
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (02) : 341 - 354
  • [37] A Gagliardo-Nirenberg Type Inequality for Rapidly Decaying Functions
    Fila, Marek
    Lankeit, Johannes
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (04) : 2901 - 2912
  • [38] INEQUALITIES OF GAGLIARDO-NIRENBERG TYPE IN REALIZED HOMOGENEOUS BESOV AND TRIEBEL-LIZORKIN SPACES
    Benallia, Mohamed
    Moussai, Madani
    [J]. MATHEMATICAL REPORTS, 2020, 22 (01): : 19 - 39
  • [39] Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms
    Hajaiej, Hichem
    Yu, Xinwei
    Zhai, Zhichun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (02) : 569 - 577
  • [40] Euler semigroup, Hardy-Sobolev and Gagliardo-Nirenberg type inequalities on homogeneous groups
    Ruzhansky, Michael
    Suragan, Durvudkhan
    Yessirkegenov, Nurgissa
    [J]. SEMIGROUP FORUM, 2020, 101 (01) : 162 - 191