A Deep-Learning Method for Path Loss Prediction Using Geospatial Information and Path Profiles

被引:7
|
作者
Hayashi, Takahiro [1 ,2 ]
Ichige, Koichi [2 ]
机构
[1] KDDI Res Inc, Fujimino, Saitama 3568502, Japan
[2] Yokohama Natl Univ, Dept Elect & Comp Engn, Yokohama, Kanagawa 2408501, Japan
关键词
Beyond 5G mobile communication; convolution neural networks (NNs); deep neural network (DNN); machine learning; path loss prediction; path profile; principal component analysis; PROPAGATION; URBAN; MODEL;
D O I
10.1109/TAP.2023.3295890
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Beyond 5G/6G should provide services everywhere, and it is necessary to expand area coverage and develop high-frequency bands from millimeter waves to terahertz waves. Based on these issues, clarifying radio propagation characteristics and modeling techniques is important for the system and area design of beyond 5G/6G, which will utilize various frequencies in any environment. We have developed a site-specific path loss model by extracting features of the propagation environment by machine learning using images of three regions as input data: the transmitting point, the receiving point, and the region between both points. However, image scaling is required in the region between the points to keep the image size constant in accordance with the distance. Therefore, even if the propagation path is the same, the effect on the propagation characteristics caused by shadowing is different. In this article, we propose a method to parameterize the environment on the propagation path in the region between the transmitting and receiving points with a constant size regardless of distance and combine it with images around the points. Since the dominant path that contributes to path loss characteristics depends on the urban structure between transmitting and receiving points, parameterizing the environment on the propagation path should improve the estimation accuracy. We demonstrate the effectiveness of the proposed method through an evaluation using 800-MHz and 2-GHz measured data in urban, suburban, and rural areas.
引用
收藏
页码:7523 / 7537
页数:15
相关论文
共 50 条
  • [31] Enhancing Machine Learning Models for Path Loss Prediction Using Image Texture Techniques
    Sotiroudis, Sotirios P.
    Siakavara, Katherine
    Koudouridis, Georgios P.
    Sarigiannidis, Panagiotis
    Goudos, Sotirios K.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (08): : 1443 - 1447
  • [32] Stock Price Prediction using Deep-Learning Model
    Pralcash, Tamil A.
    Sudha
    2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 533 - 538
  • [33] Path Planning Method of Mobile Robot Using Improved Deep Reinforcement Learning
    Wang, Wei
    Wu, Zhenkui
    Luo, Huafu
    Zhang, Bin
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2022, 2022
  • [34] Deep Learning-Based Channel Prediction With Path Extraction
    Meliha, Mehdi
    Charge, Pascal
    Wang, Yide
    Bouzid, Salah Eddine
    Henry, Christophe
    Bourny, Christophe
    Tomaz, Henrique
    Chen, Yejian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 891 - 895
  • [35] Path integral Liouville dynamics with deep learning and information entropy
    Liu, Jian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [36] Validation of Path Loss by Heuristic Prediction Tool with Path Loss and RSSI Measurements
    Plets, David
    Joseph, Wout
    Vanhecke, Kris
    Tanghe, Emmeric
    Martens, Luc
    Bouckaert, Stefan
    Moerman, Ingrid
    Demeester, Piet
    2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,
  • [37] Missing link prediction using path and community information
    Li, Min
    Zhou, Shuming
    Wang, Dajin
    Chen, Gaolin
    COMPUTING, 2024, 106 (02) : 521 - 555
  • [38] UAV Path Planning using Global and Local Map Information with Deep Reinforcement Learning
    Theile, Mirco
    Bayerlein, Harald
    Nai, Richard
    Gesbert, David
    Caccamo, Marco
    2021 20TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2021, : 539 - 546
  • [39] Missing link prediction using path and community information
    Min Li
    Shuming Zhou
    Dajin Wang
    Gaolin Chen
    Computing, 2024, 106 : 521 - 555
  • [40] A method of path loss prediction based on computer graphics technologies
    Tomie, Takahiro
    Suyama, Satoshi
    Kitao, Koshiro
    Nakamura, Mitsuki
    IEICE COMMUNICATIONS EXPRESS, 2023, 12 (06): : 300 - 304