MoS2 2D-polymorphs as Li-/Na-ion batteries: 1T' vs 2H phases

被引:3
|
作者
Gonzalez, J. W. [1 ]
Florez, E. [2 ]
Correa, J. D. [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Fis, Casilla Postal 110V, Valparaiso, Chile
[2] Univ Medellin, Fac Ciencias Bas, Medellin, Colombia
关键词
NA-ION; PROMISING ANODE; TRANSITION; GRAPHENE; MAGNETISM; MXENES; LAYER;
D O I
10.1016/j.molliq.2023.123904
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we compare the performance of two phases of MoS2 monolayers: 1T' and 2H, about their ability to adsorb lithium and sodium ions. Employing the density functional theory and molecular dynamics, we include the ion concentration to analyze the electronic structure, ion kinetics, and battery performance. The pristine 2H-MoS2 monolayer is the ground state. However, the charge transfer effects above a critical ion concentration yield a stability change, where the 1T'-MoS2 monolayer with adsorbed ions becomes more stable than the 2H counterpart. The diffusion of ions onto the 1T' monolayer is anisotropic, being more efficient at ion adsorption than the 2H phase. Finally, we calculate the open circuit voltage and specific capacity, confirming that the 1T'-MoS2 phase has great potential for developing lithium/sodium ion batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Dual carbon engineering enabling 1T/2H MoS2 with ultrastable potassium ion storage performance
    Hu, Rong
    Tong, Yanqi
    Yin, Jinling
    Wu, Junxiong
    Zhao, Jing
    Cao, Dianxue
    Wang, Guiling
    Zhu, Kai
    NANOSCALE HORIZONS, 2024, 9 (02) : 305 - 316
  • [22] C@TiO2/MoO3 Composite Nanofibers with 1T-Phase MoS2 Nanograin Dopant and Stabilized Interfaces as Anodes for Li- and Na-Ion Batteries
    Zhou, Huimin
    Xia, Xin
    Lv, Pengfei
    Zhang, Jin
    Hou, Xuebin
    Zhao, Min
    Ao, Kelong
    Wang, Di
    Lu, Keyu
    Qiao, Hui
    Zimniewska, Malgorzata
    Wei, Qufu
    CHEMSUSCHEM, 2018, 11 (23) : 4060 - 4070
  • [23] Anchoring 1T/2H MoS2 nanosheets on carbon nanofibers containing Si nanoparticles as a flexible anode for lithium-ion batteries
    Du, Xianping
    Huang, Ying
    Feng, Zhenhe
    Wang, Jiaming
    Duan, Zhiliang
    Sun, Xu
    MATERIALS CHEMISTRY FRONTIERS, 2022, 6 (23) : 3543 - 3554
  • [24] Electrochemical reactions of AgFeO2 as negative electrode in Li- and Na-ion batteries
    Berastegui, Pedro
    Tai, Cheuk-Wai
    Valvo, Mario
    JOURNAL OF POWER SOURCES, 2018, 401 : 386 - 396
  • [25] Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries
    Duveau, D.
    Israel, S. Sananes
    Fullenwarth, J.
    Cunin, F.
    Monconduit, L.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (09) : 3228 - 3232
  • [26] 2H/1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies
    Gan, Xiaorong
    Lee, Lawrence Yoon Suk
    Wong, Kwok-yin
    Lo, Tsz Wing
    Ho, Kwun Hei
    Lei, Dang Yuan
    Zhao, Huimin
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (09): : 4754 - 4765
  • [27] Insights into the Structural Evolution of MoS2 from the Semiconductive 2H to Metallic 1T Phase
    Huang, Qizhang
    Shen, Jingli
    Lu, Yuan
    Ye, Rongda
    Gong, Sheng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (35): : 17406 - 17414
  • [28] Thermal Rectifier and Thermal Transistor of 1T/2H MoS2 for Heat Flow Management
    Yang, Xiao
    Wang, Shaozhi
    Wang, Chunyang
    Lu, Rui
    Zheng, Xinghua
    Zhang, Ting
    Liu, Ming
    Zheng, Jian
    Chen, Haisheng
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) : 4434 - 4442
  • [29] Strain induced effects on the electronic and phononic properties of 2H and 1T′ monolayer MoS2
    Chaudhuri, Saumen
    Das, A. K.
    Das, G. P.
    Dev, B. N.
    PHYSICA B-CONDENSED MATTER, 2023, 655
  • [30] Tailoring Polymorphic Heterostructures of MoS2-WS2 (1T/1T, 2H/ 2H) for Efficient Hydrogen Evolution Reaction
    Seok, Hyunho
    Kim, Minjun
    Cho, Jinill
    Kim, Eungchul
    Son, Sihoon
    Kim, Keon-Woo
    Kim, Jin Kon
    Yoo, Pil J.
    Kim, Muyoung
    Kim, Hyeong-U
    Kim, Taesung
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (02) : 568 - 577