A Forest Fire Recognition Method Based on Modified Deep CNN Model

被引:2
|
作者
Zheng, Shaoxiong [1 ]
Zou, Xiangjun [2 ]
Gao, Peng [3 ]
Zhang, Qin [1 ]
Hu, Fei [1 ]
Zhou, Yufei [4 ]
Wu, Zepeng [4 ]
Wang, Weixing [5 ]
Chen, Shihong [1 ]
机构
[1] Guangdong Ecoengn Polytech, Coll Informat Engn, Guangzhou 510520, Peoples R China
[2] Foshan Zhongke Innovat Res Inst Intelligent Agr &, Foshan 528231, Peoples R China
[3] South China Agr Univ, Coll Elect Engn, Guangzhou 510642, Peoples R China
[4] Guangdong Acad Forestry Sci, Guangzhou 510520, Peoples R China
[5] South China Agr Univ, Zhujiang Coll, Guangzhou 510642, Peoples R China
来源
FORESTS | 2024年 / 15卷 / 01期
关键词
forest fire; deep learning; modified deep CNN; fire recognition; flame features;
D O I
10.3390/f15010111
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Controlling and extinguishing spreading forest fires is a challenging task that often leads to irreversible losses. Moreover, large-scale forest fires generate smoke and dust, causing environmental pollution and posing potential threats to human life. In this study, we introduce a modified deep convolutional neural network model (MDCNN) designed for the recognition and localization of fire in video imagery, employing a deep learning-based recognition approach. We apply transfer learning to refine the model and adapt it for the specific task of fire image recognition. To combat the issue of imprecise detection of flame characteristics, which are prone to misidentification, we integrate a deep CNN with an original feature fusion algorithm. We compile a diverse set of fire and non-fire scenarios to construct a training dataset of flame images, which is then employed to calibrate the model for enhanced flame detection accuracy. The proposed MDCNN model demonstrates a low false alarm rate of 0.563%, a false positive rate of 12.7%, a false negative rate of 5.3%, and a recall rate of 95.4%, and achieves an overall accuracy of 95.8%. The experimental results demonstrate that this method significantly improves the accuracy of flame recognition. The achieved recognition results indicate the model's strong generalization ability.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A Forest Fire Prediction Model Based on Meteorological Factors and the Multi-Model Ensemble Method
    Choi, Seungcheol
    Son, Minwoo
    Kim, Changgyun
    Kim, Byungsik
    Forests, 2024, 15 (11):
  • [42] Forest Fire Recognition by Improved EfficientNet-E Model Based on ECA Attention Mechanism
    Zhou L.
    Fan K.
    Qu H.
    Zhang D.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2024, 52 (02): : 42 - 49
  • [43] Multiscale fire image detection method based on CNN and Transformer
    Shengbao Wu
    Buyun Sheng
    Gaocai Fu
    Daode Zhang
    Yuchao Jian
    Multimedia Tools and Applications, 2024, 83 : 49787 - 49811
  • [44] Multiscale fire image detection method based on CNN and Transformer
    Wu, Shengbao
    Sheng, Buyun
    Fu, Gaocai
    Zhang, Daode
    Jian, Yuchao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 49787 - 49811
  • [45] Human eye state recognition method based on CNN
    Luo, Lin
    Qin, Shengwei
    Wu, Zilong
    Wang, Pingkang
    2021 THE 5TH INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, ICVIP 2021, 2021, : 13 - 18
  • [46] A Face Recognition Method Based on LBP Feature for CNN
    Zhang, Hongshuai
    Qu, Zhiyi
    Yuan, Liping
    GangLi
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 544 - 547
  • [47] CAPTCHA Recognition Method Based on CNN with Focal Loss
    Wang, Zhong
    Shi, Peibei
    COMPLEXITY, 2021, 2021
  • [48] Human Action Recognition Based on Multiple Features and Modified Deep Learning Model
    Zhu, Shaoping
    Xiao, Yongliang
    Ma, Weimin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (10)
  • [49] Forest fire smoke recognition based on convolutional neural network
    Xiaofang Sun
    Liping Sun
    Yinglai Huang
    Journal of Forestry Research, 2021, 32 : 1921 - 1927
  • [50] Improved Deep CNN-based Two Stream Super Resolution and Hybrid Deep Model-based Facial Emotion Recognition
    Ullah, Zia
    Qi, Lin
    Hasan, Asif
    Asim, Muhammad
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116