Optimal waste load allocation in river systems based on a new multi-objective cuckoo optimization algorithm

被引:4
|
作者
Haghdoost, Shekoofeh [1 ]
Niksokhan, Mohammad Hossein [1 ]
Zamani, Mohammad G. [2 ]
Nikoo, Mohammad Reza [3 ]
机构
[1] Univ Tehran, Fac Environm, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Civil & Environm Engn, Tehran, Iran
[3] Sultan Qaboos Univ, Dept Civil & Architectural Engn, Muscat, Oman
关键词
Multi-objective optimization (MOO); Waste load allocation (WLA); Cuckoo optimization algorithm (COA); Pareto front; Non-dominated sorting genetic algorithm (NSGA-II); SIMULATED ANNEALING ALGORITHM; WATER-QUALITY; GENETIC ALGORITHM; MODEL; POLLUTION;
D O I
10.1007/s11356-023-31058-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water pollution escalates with rising waste discharge in river systems, as the rivers' limited pollution tolerance and constrained self-cleaning capacity compel the release of treated pollutants. Although several studies have shown that the non-dominated sorting genetic algorithm-II (NSGA-II) is an effective algorithm regarding the management of river water quality to reach water quality standards, to our knowledge, the literature lacks using a new optimization model, namely, the multi-objective cuckoo optimization algorithm (MOCOA). Therefore, this research introduces a new optimization framework, including non-dominated sorting and ranking selection using the comparison operator densely populated towards the best Pareto front and a trade-off estimation between the goals of discharges and environmental protection authorities. The suggested algorithm is implemented for a waste load allocation issue in Jajrood River, located in the North of Iran. The limitation of this research is that discharges are point sources. To analyze the performance of the new optimization algorithm, the simulation model is linked with a hybrid optimization model using a cuckoo optimization algorithm and non-dominated sorting genetic algorithms to convert a single-objective algorithm to a multi-objective algorithm. The findings indicate that, in terms of violation index and inequity values, MOCOA's Pareto front is superior to NSGA-II, which highlights the MOCOA's effectiveness in waste load allocation. For instance, with identical population sizes and violation indexes for both algorithms, the optimal Pareto front ranges from 1.31 to 2.36 for NSGA-II and 0.379 to 2.28 for MOCOA. This suggests that MOCOA achieves a superior Pareto front in a more efficient timeframe. Additionally, MOCOA can attain optimal equity in the smaller population size.
引用
收藏
页码:125947 / 125964
页数:18
相关论文
共 50 条
  • [31] Multi-objective Ant Colony Optimization Algorithm Based on Load Balance
    Zhu, Liwen
    Tang, Ruichun
    Tao, Ye
    Ren, Meiling
    Xue, Lulu
    CLOUD COMPUTING AND SECURITY, ICCCS 2016, PT I, 2016, 10039 : 193 - 205
  • [32] A resource allocation-based multi-objective evolutionary algorithm for large-scale multi-objective optimization
    Wanting Yang
    Jianchang Liu
    Wei Zhang
    Xinnan Zhang
    Soft Computing, 2023, 27 : 17809 - 17831
  • [33] Peafowl Optimization Algorithm Based Bi-Level Multi-Objective Optimal Allocation of Energy Storage Systems in Distribution Network
    Yang B.
    Wang J.
    Yu L.
    Cao P.
    Shu H.
    Yu T.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2022, 56 (10): : 1294 - 1307
  • [34] A resource allocation-based multi-objective evolutionary algorithm for large-scale multi-objective optimization
    Yang, Wanting
    Liu, Jianchang
    Zhang, Wei
    Zhang, Xinnan
    SOFT COMPUTING, 2023, 27 (23) : 17809 - 17831
  • [35] Multi-objective optimal allocation of construction project risks, ant colony optimization algorithm
    Khazaeni, Garshasb
    Khazaeni, Ali
    INTERNATIONAL JOURNAL OF BUILDING PATHOLOGY AND ADAPTATION, 2024,
  • [36] Multi-Objective Whale Optimization Algorithm for Optimal Allocation of Distributed Generation and Capacitor Bank
    Saleh, Ayat Ali
    Mohamed, Al-Attar Ali
    Hemeida, A. M.
    Ibrahim, Abdalla Ahmed
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN COMPUTER ENGINEERING (ITCE 2019), 2019, : 459 - 465
  • [37] Research on optimal allocation of water resources based on multi-objective genetic algorithm
    Wei, Zhang
    Hui, Wang
    Journal of Software Engineering, 2015, 9 (04): : 785 - 796
  • [38] Optimal allocation of water resources by multi-objective evolutionary algorithm based on decomposition
    Wang W.
    Wang H.
    Wang, Hui (huiwang@whu.edu.cn), 1600, Inderscience Publishers (18): : 339 - 342
  • [39] Region Water Resources Optimal Allocation based on Multi-Objective Genetic Algorithm
    Feng Kepeng
    Tian Juncang
    2013 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM DESIGN AND ENGINEERING APPLICATIONS (ISDEA), 2013, : 1096 - 1098
  • [40] Water Resources Optimal Allocation Based on Multi-Objective Differential Evolution Algorithm
    Feng, Kepeng
    Tian, Juncang
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING, PTS 1-3, 2013, 278-280 : 1271 - 1274